Suppr超能文献

天然EmrE的内在构象可塑性为多药耐药性提供了一条途径。

Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance.

作者信息

Cho Min-Kyu, Gayen Anindita, Banigan James R, Leninger Maureen, Traaseth Nathaniel J

机构信息

Department of Chemistry, New York University , New York, New York 10003, United States.

出版信息

J Am Chem Soc. 2014 Jun 4;136(22):8072-80. doi: 10.1021/ja503145x. Epub 2014 May 23.

Abstract

EmrE is a multidrug resistance efflux pump with specificity to a wide range of antibiotics and antiseptics. To obtain atomic-scale insight into the attributes of the native state that encodes the broad specificity, we used a hybrid of solution and solid-state NMR methods in lipid bilayers and bicelles. Our results indicate that the native EmrE dimer oscillates between inward and outward facing structural conformations at an exchange rate (k(ex)) of ~300 s(-1) at 37 °C (millisecond motions), which is ~50-fold faster relative to the tetraphenylphosphonium (TPP(+)) substrate-bound form of the protein. These observables provide quantitative evidence that the rate-limiting step in the TPP(+) transport cycle is not the outward-inward conformational change in the absence of drug. In addition, using differential scanning calorimetry, we found that the width of the gel-to-liquid crystalline phase transition was 2 °C broader in the absence of the TPP(+) substrate versus its presence, which suggested that changes in transporter dynamics can impact the phase properties of the membrane. Interestingly, experiments with cross-linked EmrE showed that the millisecond inward-open to outward-open dynamics was not the culprit of the broadening. Instead, the calorimetry and NMR data supported the conclusion that faster time scale structural dynamics (nanosecond-microsecond) were the source and therefore impart the conformationally plastic character of native EmrE capable of binding structurally diverse substrates. These findings provide a clear example how differences in membrane protein transporter structural dynamics between drug-free and bound states can have a direct impact on the physical properties of the lipid bilayer in an allosteric fashion.

摘要

EmrE是一种对多种抗生素和防腐剂具有特异性的多药耐药性外排泵。为了在原子尺度上深入了解编码广泛特异性的天然状态的特性,我们在脂质双层和双分子层中使用了溶液核磁共振和固态核磁共振方法相结合的技术。我们的结果表明,天然的EmrE二聚体在37°C时以约300 s⁻¹的交换速率(k(ex))在向内和向外的结构构象之间振荡(毫秒级运动),这比与四苯基鏻(TPP⁺)底物结合的蛋白质形式快约50倍。这些观测结果提供了定量证据,表明TPP⁺转运循环中的限速步骤不是在没有药物时的向外-向内构象变化。此外,使用差示扫描量热法,我们发现与存在TPP⁺底物相比,在没有TPP⁺底物时凝胶-液晶相转变的宽度宽2°C,这表明转运体动力学的变化会影响膜的相性质。有趣的是,对交联EmrE的实验表明,毫秒级的向内开放到向外开放动力学不是变宽的原因。相反,量热法和核磁共振数据支持这样的结论,即更快时间尺度的结构动力学(纳秒-微秒)是来源,因此赋予了天然EmrE能够结合结构多样底物的构象可塑性特征。这些发现提供了一个明确的例子,说明无药物状态和结合状态之间膜蛋白转运体结构动力学的差异如何以变构方式直接影响脂质双层的物理性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24d8/4063181/4eb08836b0d1/ja-2014-03145x_0002.jpg

相似文献

1
Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance.
J Am Chem Soc. 2014 Jun 4;136(22):8072-80. doi: 10.1021/ja503145x. Epub 2014 May 23.
3
New free-exchange model of EmrE transport.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):E10083-E10091. doi: 10.1073/pnas.1708671114. Epub 2017 Nov 7.
4
Structure, dynamics, and substrate-induced conformational changes of the multidrug transporter EmrE in liposomes.
J Biol Chem. 2010 Aug 20;285(34):26710-8. doi: 10.1074/jbc.M110.132621. Epub 2010 Jun 15.
5
Detecting substrates bound to the secondary multidrug efflux pump EmrE by DNP-enhanced solid-state NMR.
J Am Chem Soc. 2013 Oct 23;135(42):15754-62. doi: 10.1021/ja402605s. Epub 2013 Oct 11.
6
X-ray structure of the EmrE multidrug transporter in complex with a substrate.
Science. 2005 Dec 23;310(5756):1950-3. doi: 10.1126/science.1119776.
7
Transported substrate determines exchange rate in the multidrug resistance transporter EmrE.
J Biol Chem. 2014 Mar 7;289(10):6825-6836. doi: 10.1074/jbc.M113.535328. Epub 2014 Jan 21.
8
Spectroscopic analysis of small multidrug resistance protein EmrE in the presence of various quaternary cation compounds.
Biochim Biophys Acta. 2012 May;1818(5):1318-31. doi: 10.1016/j.bbamem.2012.01.022. Epub 2012 Feb 2.
9
The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release.
J Biol Chem. 2018 Dec 7;293(49):19137-19147. doi: 10.1074/jbc.RA118.005430. Epub 2018 Oct 4.
10
Conformational changes in the multidrug transporter EmrE associated with substrate binding.
J Mol Biol. 2003 Sep 5;332(1):229-42. doi: 10.1016/s0022-2836(03)00895-7.

引用本文的文献

1
Dipolar Recoupling in Rotating Solids.
Chem Rev. 2024 Nov 27;124(22):12844-12917. doi: 10.1021/acs.chemrev.4c00373. Epub 2024 Nov 6.
2
Peripheral positions encode transport specificity in the small multidrug resistance exporters.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2403273121. doi: 10.1073/pnas.2403273121. Epub 2024 Jun 12.
3
Dynamics underlie the drug recognition mechanism by the efflux transporter EmrE.
Nat Commun. 2024 May 28;15(1):4537. doi: 10.1038/s41467-024-48803-2.
4
Characterization of nanodisc-forming peptides for membrane protein studies.
J Colloid Interface Sci. 2024 Jan;653(Pt B):1402-1414. doi: 10.1016/j.jcis.2023.09.162. Epub 2023 Sep 29.
5
Microsecond Motion of the Bacterial Transporter EmrE in Lipid Bilayers.
J Am Chem Soc. 2023 May 10;145(18):10104-10115. doi: 10.1021/jacs.3c00340. Epub 2023 Apr 25.
6
Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions.
J Colloid Interface Sci. 2023 Mar 15;634:887-896. doi: 10.1016/j.jcis.2022.12.112. Epub 2022 Dec 21.
7
Still rocking in the structural era: A molecular overview of the small multidrug resistance (SMR) transporter family.
J Biol Chem. 2022 Oct;298(10):102482. doi: 10.1016/j.jbc.2022.102482. Epub 2022 Sep 12.
8
High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport.
Nat Commun. 2022 Feb 18;13(1):991. doi: 10.1038/s41467-022-28556-6.
9
Asymmetric protonation of glutamate residues drives a preferred transport pathway in EmrE.
Proc Natl Acad Sci U S A. 2021 Oct 12;118(41). doi: 10.1073/pnas.2110790118.
10
Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins.
Int J Mol Sci. 2021 Jul 6;22(14):7267. doi: 10.3390/ijms22147267.

本文引用的文献

1
Transported substrate determines exchange rate in the multidrug resistance transporter EmrE.
J Biol Chem. 2014 Mar 7;289(10):6825-6836. doi: 10.1074/jbc.M113.535328. Epub 2014 Jan 21.
2
Detecting substrates bound to the secondary multidrug efflux pump EmrE by DNP-enhanced solid-state NMR.
J Am Chem Soc. 2013 Oct 23;135(42):15754-62. doi: 10.1021/ja402605s. Epub 2013 Oct 11.
3
Ligand-induced conformational changes of the multidrug resistance transporter EmrE probed by oriented solid-state NMR spectroscopy.
Angew Chem Int Ed Engl. 2013 Sep 23;52(39):10321-4. doi: 10.1002/anie.201303091. Epub 2013 Aug 12.
4
Crystal structure of a nitrate/nitrite exchanger.
Nature. 2013 May 30;497(7451):647-51. doi: 10.1038/nature12139. Epub 2013 May 12.
6
Structural advances for the major facilitator superfamily (MFS) transporters.
Trends Biochem Sci. 2013 Mar;38(3):151-9. doi: 10.1016/j.tibs.2013.01.003. Epub 2013 Feb 8.
7
Transforming a drug/H+ antiporter into a polyamine importer by a single mutation.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16894-9. doi: 10.1073/pnas.1211831109. Epub 2012 Oct 3.
8
Protein activity regulation by conformational entropy.
Nature. 2012 Aug 9;488(7410):236-40. doi: 10.1038/nature11271.
9
Antiparallel EmrE exports drugs by exchanging between asymmetric structures.
Nature. 2011 Dec 18;481(7379):45-50. doi: 10.1038/nature10703.
10
Modulation of substrate efflux in bacterial small multidrug resistance proteins by mutations at the dimer interface.
J Bacteriol. 2011 Nov;193(21):5929-35. doi: 10.1128/JB.05846-11. Epub 2011 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验