Cho Min-Kyu, Gayen Anindita, Banigan James R, Leninger Maureen, Traaseth Nathaniel J
Department of Chemistry, New York University , New York, New York 10003, United States.
J Am Chem Soc. 2014 Jun 4;136(22):8072-80. doi: 10.1021/ja503145x. Epub 2014 May 23.
EmrE is a multidrug resistance efflux pump with specificity to a wide range of antibiotics and antiseptics. To obtain atomic-scale insight into the attributes of the native state that encodes the broad specificity, we used a hybrid of solution and solid-state NMR methods in lipid bilayers and bicelles. Our results indicate that the native EmrE dimer oscillates between inward and outward facing structural conformations at an exchange rate (k(ex)) of ~300 s(-1) at 37 °C (millisecond motions), which is ~50-fold faster relative to the tetraphenylphosphonium (TPP(+)) substrate-bound form of the protein. These observables provide quantitative evidence that the rate-limiting step in the TPP(+) transport cycle is not the outward-inward conformational change in the absence of drug. In addition, using differential scanning calorimetry, we found that the width of the gel-to-liquid crystalline phase transition was 2 °C broader in the absence of the TPP(+) substrate versus its presence, which suggested that changes in transporter dynamics can impact the phase properties of the membrane. Interestingly, experiments with cross-linked EmrE showed that the millisecond inward-open to outward-open dynamics was not the culprit of the broadening. Instead, the calorimetry and NMR data supported the conclusion that faster time scale structural dynamics (nanosecond-microsecond) were the source and therefore impart the conformationally plastic character of native EmrE capable of binding structurally diverse substrates. These findings provide a clear example how differences in membrane protein transporter structural dynamics between drug-free and bound states can have a direct impact on the physical properties of the lipid bilayer in an allosteric fashion.
EmrE是一种对多种抗生素和防腐剂具有特异性的多药耐药性外排泵。为了在原子尺度上深入了解编码广泛特异性的天然状态的特性,我们在脂质双层和双分子层中使用了溶液核磁共振和固态核磁共振方法相结合的技术。我们的结果表明,天然的EmrE二聚体在37°C时以约300 s⁻¹的交换速率(k(ex))在向内和向外的结构构象之间振荡(毫秒级运动),这比与四苯基鏻(TPP⁺)底物结合的蛋白质形式快约50倍。这些观测结果提供了定量证据,表明TPP⁺转运循环中的限速步骤不是在没有药物时的向外-向内构象变化。此外,使用差示扫描量热法,我们发现与存在TPP⁺底物相比,在没有TPP⁺底物时凝胶-液晶相转变的宽度宽2°C,这表明转运体动力学的变化会影响膜的相性质。有趣的是,对交联EmrE的实验表明,毫秒级的向内开放到向外开放动力学不是变宽的原因。相反,量热法和核磁共振数据支持这样的结论,即更快时间尺度的结构动力学(纳秒-微秒)是来源,因此赋予了天然EmrE能够结合结构多样底物的构象可塑性特征。这些发现提供了一个明确的例子,说明无药物状态和结合状态之间膜蛋白转运体结构动力学的差异如何以变构方式直接影响脂质双层的物理性质。