Biological and Ecological Engineering, Oregon State University, Corvallis, USA.
Biotechnol Biofuels. 2011 Sep 5;4:27. doi: 10.1186/1754-6834-4-27.
While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock.
Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively.
Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.
虽然生物燃料的优势已被广泛报道,但研究也强调了大规模生产生物燃料所面临的挑战。乙醇的成本和纤维素乙醇工厂的过程能源使用取决于用于转化原料的技术。过程建模可以帮助识别生产过程中的技术经济瓶颈。使用一些常见的预处理技术:稀酸、稀碱、热水和蒸汽爆炸,对纤维素原料转化为乙醇进行了全面的技术经济分析。使用 SuperPro Designer 开发了包含原料处理、预处理、同步糖化和共发酵、乙醇回收和下游加工的详细过程模型。高羊茅(Festuca arundinacea Schreb)被用作模型原料。
使用稀酸、稀碱、热水和蒸汽爆炸预处理技术的转化过程预计乙醇产量分别为 252.62、255.80、255.27 和 230.23 L/干吨生物质。假设原料和纤维素酶的价格分别为 50 美元/吨和 0.517 美元/升发酵液(发酵液中蛋白质 10%,蛋白质中 600 FPU/g)。处理 25 万吨/年原料的乙醇厂的资本成本分别为稀酸、稀碱、热水和蒸汽爆炸预处理工艺的 1.92、1.73、1.72 和 1.70 美元/L 乙醇。使用稀酸、稀碱、热水和蒸汽爆炸预处理的生产过程,乙醇生产成本分别估计为 0.83、0.88、0.81 和 0.85 美元/L 乙醇。使用稀酸、稀碱、热水和蒸汽爆炸预处理的生产过程中的用水量分别估计为 5.96、6.07、5.84 和 4.36 千克/L 乙醇。
乙醇价格和能源使用高度依赖于乙醇生产厂使用的工艺条件。通过提高戊糖发酵效率和降低生物质和酶成本,有可能显著降低乙醇成本。结果表明,在资本成本、预处理和下游加工技术方面,需要权衡取舍。