Suppr超能文献

非均匀细胞外电阻率影响上下状态振荡的电流源密度分布。

Non-homogeneous extracellular resistivity affects the current-source density profiles of up-down state oscillations.

机构信息

Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2011 Oct 13;369(1952):3802-19. doi: 10.1098/rsta.2011.0119.

Abstract

Rhythmic local field potential (LFP) oscillations observed during deep sleep are the result of synchronized electrical activities of large neuronal ensembles, which consist of alternating periods of activity and silence, termed 'up' and 'down' states, respectively. Current-source density (CSD) analysis indicates that the up states of these slow oscillations are associated with current sources in superficial cortical layers and sinks in deep layers, while the down states display the opposite pattern of source-sink distribution. We show here that a network model of up and down states displays this CSD profile only if a frequency-filtering extracellular medium is assumed. When frequency filtering was modelled as inhomogeneous conductivity, this simple model had considerably more power in slow frequencies, resulting in significant differences in LFP and CSD profiles compared with the constant-resistivity model. These results suggest that the frequency-filtering properties of extracellular media may have important consequences for the interpretation of the results of CSD analysis.

摘要

在深度睡眠期间观察到的节律性局部场电位 (LFP) 振荡是由大神经元集合的同步电活动引起的,这些集合由活动和静止交替的时期组成,分别称为“向上”和“向下”状态。电流源密度 (CSD) 分析表明,这些慢振荡的向上状态与浅层皮质层中的电流源和深层中的汇相关,而向下状态显示出相反的源汇分布模式。我们在这里表明,只有假设存在频率滤波的细胞外介质,上下状态的网络模型才会显示出这种 CSD 分布。当将频率滤波建模为非均匀电导率时,与恒定电阻率模型相比,这个简单的模型在慢频率下具有更大的功率,导致 LFP 和 CSD 谱的显著差异。这些结果表明,细胞外介质的频率滤波特性可能对 CSD 分析结果的解释产生重要影响。

相似文献

1
Non-homogeneous extracellular resistivity affects the current-source density profiles of up-down state oscillations.
Philos Trans A Math Phys Eng Sci. 2011 Oct 13;369(1952):3802-19. doi: 10.1098/rsta.2011.0119.
2
Slow spindles are associated with cortical high frequency activity.
Neuroimage. 2019 Apr 1;189:71-84. doi: 10.1016/j.neuroimage.2019.01.012. Epub 2019 Jan 9.
3
Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.
Brain. 2015 Jun;138(Pt 6):1629-41. doi: 10.1093/brain/awv073. Epub 2015 Mar 19.
4
Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.
J Neurosci. 2015 Sep 23;35(38):13006-19. doi: 10.1523/JNEUROSCI.1359-15.2015.
7
Slow-wave oscillations in a corticothalamic model of sleep and wake.
J Theor Biol. 2015 Apr 7;370:93-102. doi: 10.1016/j.jtbi.2015.01.028. Epub 2015 Feb 4.
8
Infragranular layers lead information flow during slow oscillations according to information directionality indicators.
J Comput Neurosci. 2015 Aug;39(1):53-62. doi: 10.1007/s10827-015-0563-7. Epub 2015 May 14.
10
Discrepancies between Multi-Electrode LFP and CSD Phase-Patterns: A Forward Modeling Study.
Front Neural Circuits. 2016 Jul 15;10:51. doi: 10.3389/fncir.2016.00051. eCollection 2016.

引用本文的文献

1
Python/NEURON code for simulating biophysically realistic thalamocortical dynamics during sleep.
Softw Impacts. 2024 Sep;21. doi: 10.1016/j.simpa.2024.100667. Epub 2024 Jun 3.
3
Structural and functional imaging of brains.
Sci China Chem. 2023;66(2):324-366. doi: 10.1007/s11426-022-1408-5. Epub 2022 Dec 9.
4
Admittance Method for Estimating Local Field Potentials Generated in a Multi-Scale Neuron Model of the Hippocampus.
Front Comput Neurosci. 2020 Aug 4;14:72. doi: 10.3389/fncom.2020.00072. eCollection 2020.
5
Resolving the Micro-Macro Disconnect to Address Core Features of Seizure Networks.
Neuron. 2019 Mar 20;101(6):1016-1028. doi: 10.1016/j.neuron.2019.01.043.
6
Current Source Density Analysis of Electroantennogram Recordings: A Tool for Mapping the Olfactory Response in an Insect Antenna.
Front Cell Neurosci. 2018 Sep 5;12:287. doi: 10.3389/fncel.2018.00287. eCollection 2018.
7
Model-Based Analysis of Electrode Placement and Pulse Amplitude for Hippocampal Stimulation.
IEEE Trans Biomed Eng. 2018 Oct;65(10):2278-2289. doi: 10.1109/TBME.2018.2791860. Epub 2018 Jan 25.
8
Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.
PLoS One. 2018 Jan 10;13(1):e0189916. doi: 10.1371/journal.pone.0189916. eCollection 2018.
9
Electrodiffusion phenomena in neuroscience: a neglected companion.
Nat Rev Neurosci. 2017 Sep 19;18(10):598-612. doi: 10.1038/nrn.2017.101.
10
Analytic Modeling of Neural Tissue: I. A Spherical Bidomain.
J Math Neurosci. 2016 Dec;6(1):9. doi: 10.1186/s13408-016-0041-1. Epub 2016 Sep 9.

本文引用的文献

1
Laminar analysis of slow wave activity in humans.
Brain. 2010 Sep;133(9):2814-29. doi: 10.1093/brain/awq169. Epub 2010 Jul 23.
2
Endogenous electric fields may guide neocortical network activity.
Neuron. 2010 Jul 15;67(1):129-43. doi: 10.1016/j.neuron.2010.06.005.
3
Unitary inhibitory field potentials in the CA3 region of rat hippocampus.
J Physiol. 2010 Jun 15;588(Pt 12):2077-90. doi: 10.1113/jphysiol.2009.185918. Epub 2010 Apr 19.
4
Origin of active states in local neocortical networks during slow sleep oscillation.
Cereb Cortex. 2010 Nov;20(11):2660-74. doi: 10.1093/cercor/bhq009. Epub 2010 Mar 3.
6
The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators.
Nat Neurosci. 2010 Jan;13(1):9-17. doi: 10.1038/nn.2445. Epub 2009 Dec 6.
7
The direct relationship between inhibitory currents and local field potentials.
J Neurosci. 2009 Dec 2;29(48):15299-307. doi: 10.1523/JNEUROSCI.2019-09.2009.
9
Macroscopic models of local field potentials and the apparent 1/f noise in brain activity.
Biophys J. 2009 Apr 8;96(7):2589-603. doi: 10.1016/j.bpj.2008.12.3951.
10
Local origin of field potentials in visual cortex.
Neuron. 2009 Jan 15;61(1):35-41. doi: 10.1016/j.neuron.2008.11.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验