Suppr超能文献

解决微观-宏观脱节问题,以解决癫痫网络的核心特征。

Resolving the Micro-Macro Disconnect to Address Core Features of Seizure Networks.

机构信息

Department of Neurosurgery, Stanford University, Stanford, CA, USA.

Department of Neurosurgery, Stanford University, Stanford, CA, USA.

出版信息

Neuron. 2019 Mar 20;101(6):1016-1028. doi: 10.1016/j.neuron.2019.01.043.

Abstract

Current drug treatments for epilepsy attempt to broadly restrict excitability to mask a symptom, seizures, with little regard for the heterogeneous mechanisms that underlie disease manifestation across individuals. Here, we discuss the need for a more complete view of epilepsy, outlining how key features at the cellular and microcircuit level can significantly impact disease mechanisms that are not captured by the most common methodology to study epilepsy, electroencephalography (EEG). We highlight how major advances in neuroscience tool development now enable multi-scale investigation of fundamental questions to resolve the currently controversial understanding of seizure networks. These findings will provide essential insight into what has emerged as a disconnect between the different levels of investigation and identify new targets and treatment options.

摘要

目前针对癫痫的药物治疗方法试图广泛抑制兴奋性以掩盖症状——癫痫发作,但很少考虑到个体之间导致疾病表现的异质性机制。在这里,我们讨论了对癫痫进行更全面了解的必要性,概述了细胞和微电路水平的关键特征如何显著影响最常见的癫痫研究方法——脑电图(EEG)无法捕捉到的疾病机制。我们强调了神经科学工具开发的重大进展如何使多尺度研究基本问题成为可能,以解决目前对癫痫网络有争议的理解。这些发现将为不同研究水平之间脱节的问题提供重要的见解,并确定新的靶点和治疗选择。

相似文献

1
Resolving the Micro-Macro Disconnect to Address Core Features of Seizure Networks.
Neuron. 2019 Mar 20;101(6):1016-1028. doi: 10.1016/j.neuron.2019.01.043.
2
Visibility Graph from Adaptive Optimal Kernel Time-Frequency Representation for Classification of Epileptiform EEG.
Int J Neural Syst. 2017 Jun;27(4):1750005. doi: 10.1142/S0129065717500058. Epub 2016 Sep 13.
3
Connectivity strength, time lag structure and the epilepsy network in resting-state fMRI.
Neuroimage Clin. 2019;24:102035. doi: 10.1016/j.nicl.2019.102035. Epub 2019 Oct 23.
4
Microcircuits in Epilepsy: Heterogeneity and Hub Cells in Network Synchronization.
Cold Spring Harb Perspect Med. 2015 Nov 2;5(11):a022855. doi: 10.1101/cshperspect.a022855.
5
Applications of optogenetic and chemogenetic methods to seizure circuits: Where to go next?
J Neurosci Res. 2017 Dec;95(12):2345-2356. doi: 10.1002/jnr.24135. Epub 2017 Aug 9.
6
Network Properties Revealed during Multi-Scale Calcium Imaging of Seizure Activity in Zebrafish.
eNeuro. 2019 Mar 11;6(1). doi: 10.1523/ENEURO.0041-19.2019. eCollection 2019 Jan-Feb.
7
Decision Making in Epilepsy Surgery.
Neurosurg Clin N Am. 2020 Jul;31(3):471-479. doi: 10.1016/j.nec.2020.03.014.
8
Network Basis of Seizures Induced by Deep Brain Stimulation: Literature Review and Connectivity Analysis.
World Neurosurg. 2019 Dec;132:314-320. doi: 10.1016/j.wneu.2019.08.094. Epub 2019 Aug 23.
9
Mapping whole brain seizure network recruitment with optogenetic kindling.
J Neurophysiol. 2022 Feb 1;127(2):393-396. doi: 10.1152/jn.00525.2021. Epub 2022 Jan 5.
10
Neuroimaging in Epilepsy.
Curr Neurol Neurosci Rep. 2017 Apr;17(4):32. doi: 10.1007/s11910-017-0746-x.

引用本文的文献

1
Interictal network dysfunction and cognitive impairment in epilepsy.
Nat Rev Neurosci. 2025 Apr 28. doi: 10.1038/s41583-025-00924-3.
2
Pathological microcircuits and epileptiform events in patient hippocampal slices.
bioRxiv. 2025 Mar 18:2024.11.13.623525. doi: 10.1101/2024.11.13.623525.
3
Chemogenetic Breakdown of the Dentate Gate Causes Seizures and Spatial Memory Deficits.
bioRxiv. 2024 Nov 14:2024.11.12.623184. doi: 10.1101/2024.11.12.623184.
4
Epilepsy insights revealed by intravital functional optical imaging.
Front Neurol. 2024 Aug 29;15:1465232. doi: 10.3389/fneur.2024.1465232. eCollection 2024.
5
Seizure event detection using intravital two-photon calcium imaging data.
Neurophotonics. 2024 Apr;11(2):024202. doi: 10.1117/1.NPh.11.2.024202. Epub 2024 Jan 25.
6
Seizure Event Detection Using Intravital Two-Photon Calcium Imaging Data.
bioRxiv. 2023 Sep 29:2023.09.28.558338. doi: 10.1101/2023.09.28.558338.
10
Excitatory somatostatin interneurons in the dentate gyrus drive a widespread seizure network in cortical dysplasia.
Signal Transduct Target Ther. 2023 May 17;8(1):186. doi: 10.1038/s41392-023-01404-9.

本文引用的文献

1
Neural Recording and Modulation Technologies.
Nat Rev Mater. 2017 Feb;2(2). doi: 10.1038/natrevmats.2016.93. Epub 2017 Jan 4.
2
High-density multi-fiber photometry for studying large-scale brain circuit dynamics.
Nat Methods. 2019 Jun;16(6):553-560. doi: 10.1038/s41592-019-0400-4. Epub 2019 May 13.
3
A Compact Head-Mounted Endoscope for In Vivo Calcium Imaging in Freely Behaving Mice.
Curr Protoc Neurosci. 2018 Jul;84(1):e51. doi: 10.1002/cpns.51. Epub 2018 Jun 26.
4
Vascular Compartmentalization of Functional Hyperemia from the Synapse to the Pia.
Neuron. 2018 Jul 25;99(2):362-375.e4. doi: 10.1016/j.neuron.2018.06.012. Epub 2018 Jun 21.
5
A novel pyramidal cell type promotes sharp-wave synchronization in the hippocampus.
Nat Neurosci. 2018 Jul;21(7):985-995. doi: 10.1038/s41593-018-0172-7. Epub 2018 Jun 18.
6
Role of inhibitory control in modulating focal seizure spread.
Brain. 2018 Jul 1;141(7):2083-2097. doi: 10.1093/brain/awy116.
7
The GABA Receptor β Subunit Is Required for Inhibitory Transmission.
Neuron. 2018 May 16;98(4):718-725.e3. doi: 10.1016/j.neuron.2018.03.046. Epub 2018 Apr 26.
8
Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell Classes.
Cell. 2018 May 17;173(5):1280-1292.e18. doi: 10.1016/j.cell.2018.03.031. Epub 2018 Apr 19.
9
CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus.
Nat Neurosci. 2018 Apr;21(4):484-493. doi: 10.1038/s41593-018-0118-0. Epub 2018 Mar 28.
10
A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters.
Nat Chem Biol. 2018 Apr;14(4):352-360. doi: 10.1038/s41589-018-0004-9. Epub 2018 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验