Suppr超能文献

用于信息检索的多术语超级概念评估。

Evaluation of multi-terminology super-concepts for information retrieval.

作者信息

Griffon Nicolas, Soualmia Lina F, Névéol Aurélie, Massari Philippe, Thirion Benoit, Dahamna Badisse, Darmoni Stefan J

机构信息

CISMeF, Rouen University Hospital, France.

出版信息

Stud Health Technol Inform. 2011;169:492-6.

Abstract

BACKGROUND

Following a recent change in the indexing policy for French quality controlled health gateway CISMeF, multiple terminologies are now being used for indexing in addition to MeSH®.

OBJECTIVE

To evaluate precision and recall of super-concepts for information retrieval in a multi-terminology paradigm compared to MeSH-only.

METHODS

We evaluate the relevance of resources retrieved by multi-terminology super-concepts and MeSH-only super-concepts queries.

RESULTS

Recall was 8-14% higher for multi-terminology super-concepts compared to MeSH only super-concepts. Precision decreased from 0.66 for MeSH only super-concepts to 0.61 for multi-terminology super-concepts. Retrieval performance was found to vary significantly depending on the super-concepts (p<10) and indexing methods (manual vs automatic; p<0.004).

CONCLUSION

A multi-terminology paradigm contributes to increase recall but lowers precision. Automated tools for indexing are not accurate enough to allow a very precise information retrieval.

摘要

背景

随着法国质量控制健康网关CISMeF索引政策最近的变化,除医学主题词表(MeSH®)外,现在还使用多种术语进行索引。

目的

与仅使用MeSH相比,评估在多术语范式中用于信息检索的超级概念的精确率和召回率。

方法

我们评估通过多术语超级概念和仅MeSH超级概念查询检索到的资源的相关性。

结果

与仅使用MeSH超级概念相比,多术语超级概念的召回率高8 - 14%。精确率从仅使用MeSH超级概念的0.66降至多术语超级概念的0.61。发现检索性能因超级概念(p<10)和索引方法(手动与自动;p<0.004)而有显著差异。

结论

多术语范式有助于提高召回率,但降低了精确率。用于索引的自动化工具不够准确,无法实现非常精确的信息检索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验