Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States.
J Am Chem Soc. 2011 Sep 28;133(38):15139-47. doi: 10.1021/ja2055098. Epub 2011 Sep 6.
Methods for synthetically manipulating protein structure enable greater flexibility in the study of protein function. Previous characterization of the Escherichia coli aminoacyl tRNA transferase (AaT) has shown that it can modify the N-terminus of a protein with an amino acid from a tRNA or a synthetic oligonucleotide donor. Here, we demonstrate that AaT can efficiently use a minimal adenosine substrate, which can be synthesized in one to two steps from readily available starting materials. We have characterized the enzymatic activity of AaT with aminoacyl adenosyl donors and found that reaction products do not inhibit AaT. The use of adenosyl donors removes the substrate limitations imposed by the use of synthetases for tRNA charging and avoids the complex synthesis of an oligonucleotide donor. Thus, our AaT donors increase the potential substrate scope and reaction scale for N-terminal protein modification under conditions that maintain folding.
方法合成操纵蛋白质结构使更大的灵活性在蛋白质功能的研究。以前的表征大肠杆菌氨酰 tRNA 转移酶(AAT)表明,它可以修改蛋白质的 N 端的氨基酸从 tRNA 或合成寡核苷酸供体。在这里,我们证明 AaT 可以有效地使用最小的腺苷底物,这可以一步到两步从现成的起始材料合成。我们已经用氨酰腺苷供体的酶活性的 AaT 并发现反应产物不抑制 AaT。使用腺苷供体去除由使用合成酶 tRNA 充电和避免复杂的寡核苷酸供体的合成的基质限制。因此,我们的 AaT 供体增加潜在的底物范围和反应规模的 N-末端蛋白质修饰条件下保持折叠。