Suppr超能文献

评价一种用于检测视交叉和视交叉后病变引起的视野缺损的算法:神经病学视野测试。

Evaluation of an algorithm for detecting visual field defects due to chiasmal and postchiasmal lesions: the neurological hemifield test.

机构信息

Glaucoma Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.

出版信息

Invest Ophthalmol Vis Sci. 2011 Oct 10;52(11):7959-65. doi: 10.1167/iovs.11-7868.

Abstract

PURPOSE

To develop an automated neurologic hemifield test (NHT) to detect visual field loss caused by chiasmal or postchiasmal lesions.

METHODS

Visual field locations from 24-2 pattern automated visual fields were grouped into two symmetric regions with 16 points on either side of the vertical meridian. A scoring system similar to the Glaucoma Hemifield Test (GHT) was used to calculate point scores using the pattern deviation values from the right and left regions. The cross-vertical difference in the sum of these values was the NHT score. The NHT was evaluated using visual fields from subjects with known neurologic disease, subjects with glaucoma, and glaucoma suspects (92 pairs of eyes each). The NHT score was calculated for each eye. Four masked reviewers scored all pairs of visual fields with regard to the likelihood of neurologic and glaucomatous optic neuropathy. Both NHT score and expert field ratings were compared with clinical diagnosis by receiver operating characteristic (ROC) analysis.

RESULTS

The NHT effectively discriminated neurologic fields from those of glaucoma patients and glaucoma suspects (area under the ROC curve [AUC] = 0.90; 95% confidence interval [CI], 0.86-0.94). The NHT score correlated well with clinician grading (Pearson correlation estimates, 0.74-0.78). Even when field defects were subtle, the NHT had some ability to discriminate neurologic from nonneurologic fields (AUC 0.68; 95% CI, 0.56-0.79).

CONCLUSIONS

The NHT distinguished neurologic field defects from those of glaucoma and glaucoma suspects, rivaling the performance of subspecialist clinicians. Its implementation may help identify unsuspected neurologic disease.

摘要

目的

开发一种自动化的神经视野测试(NHT),以检测视交叉或视交叉后病变引起的视野缺失。

方法

将 24-2 模式自动视野的视野位置分为两个对称区域,每个区域在垂直子午线的两侧有 16 个点。使用类似于青光眼半视野测试(GHT)的评分系统,使用右侧和左侧区域的模式偏差值计算点评分。这些值的总和的纵横差就是 NHT 评分。使用已知神经疾病患者、青光眼患者和青光眼疑似患者的视野(每组 92 对眼睛)评估 NHT。计算每只眼睛的 NHT 评分。四名盲法评审员根据神经和青光眼视神经病变的可能性对所有配对视野进行评分。通过接收者操作特性(ROC)分析比较 NHT 评分和专家视野评分与临床诊断的关系。

结果

NHT 能够有效地将神经视野与青光眼患者和青光眼疑似患者的视野区分开来(ROC 曲线下面积 [AUC] = 0.90;95%置信区间 [CI],0.86-0.94)。NHT 评分与临床医生分级相关性良好(Pearson 相关估计值,0.74-0.78)。即使视野缺陷很细微,NHT 也有一定的能力将神经与非神经视野区分开来(AUC 为 0.68;95%CI,0.56-0.79)。

结论

NHT 能够区分神经视野缺陷与青光眼和青光眼疑似患者的视野缺陷,与专科临床医生的表现相当。它的实施可能有助于发现未被怀疑的神经疾病。

相似文献

4
Neurological Hemifield Test in Binasal Defects.双眼鼻侧缺损的神经半视野测试
Invest Ophthalmol Vis Sci. 2015 Apr;56(4):2568-9. doi: 10.1167/iovs.15-16656.

本文引用的文献

4
ROCR: visualizing classifier performance in R.ROCR:在R语言中可视化分类器性能
Bioinformatics. 2005 Oct 15;21(20):3940-1. doi: 10.1093/bioinformatics/bti623. Epub 2005 Aug 11.
9
Evaluation of methods for automated Hemifield analysis in perimetry.视野检查中自动半视野分析方法的评估
Arch Ophthalmol. 1992 Jun;110(6):820-6. doi: 10.1001/archopht.1992.01080180092034.
10
Glaucoma Hemifield Test. Automated visual field evaluation.青光眼半视野检测。自动视野评估。
Arch Ophthalmol. 1992 Jun;110(6):812-9. doi: 10.1001/archopht.1992.01080180084033.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验