Suppr超能文献

双能 CT 组织分割对低能近距离治疗蒙特卡罗剂量计算潜在精度增益的模拟研究。

Simulation study on potential accuracy gains from dual energy CT tissue segmentation for low-energy brachytherapy Monte Carlo dose calculations.

机构信息

Department of Radiation Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN, The Netherlands.

出版信息

Phys Med Biol. 2011 Oct 7;56(19):6257-78. doi: 10.1088/0031-9155/56/19/007. Epub 2011 Sep 6.

Abstract

This work compares Monte Carlo (MC) dose calculations for (125)I and (103)Pd low-dose rate (LDR) brachytherapy sources performed in virtual phantoms containing a series of human soft tissues of interest for brachytherapy. The geometries are segmented (tissue type and density assignment) based on simulated single energy computed tomography (SECT) and dual energy (DECT) images, as well as the all-water TG-43 approach. Accuracy is evaluated by comparison to a reference MC dose calculation performed in the same phantoms, where each voxel's material properties are assigned with exactly known values. The objective is to assess potential dose calculation accuracy gains from DECT. A CT imaging simulation package, ImaSim, is used to generate CT images of calibration and dose calculation phantoms at 80, 120, and 140 kVp. From the high and low energy images electron density ρ(e) and atomic number Z are obtained using a DECT algorithm. Following a correction derived from scans of the calibration phantom, accuracy on Z and ρ(e) of ±1% is obtained for all soft tissues with atomic number Z ∊ [6,8] except lung. GEANT4 MC dose calculations based on DECT segmentation agreed with the reference within ±4% for (103)Pd, the most sensitive source to tissue misassignments. SECT segmentation with three tissue bins as well as the TG-43 approach showed inferior accuracy with errors of up to 20%. Using seven tissue bins in our SECT segmentation brought errors within ±10% for (103)Pd. In general (125)I dose calculations showed higher accuracy than (103)Pd. Simulated image noise was found to decrease DECT accuracy by 3-4%. Our findings suggest that DECT-based segmentation yields improved accuracy when compared to SECT segmentation with seven tissue bins in LDR brachytherapy dose calculation for the specific case of our non-anthropomorphic phantom. The validity of our conclusions for clinical geometry as well as the importance of image noise in the tissue segmentation procedure deserves further experimental investigation.

摘要

这项工作比较了蒙特卡罗(MC)剂量计算,用于(125)I 和(103)Pd 低剂量率(LDR)近距离治疗源,这些源在包含一系列对近距离治疗有意义的人体软组织的虚拟体模中进行。这些几何形状是基于模拟的单能量计算机断层扫描(SECT)和双能(DECT)图像以及全水 TG-43 方法进行分割的(组织类型和密度分配)。准确性通过与在相同体模中进行的参考 MC 剂量计算进行比较来评估,其中每个体素的材料特性都分配有确切已知的值。目的是评估 DECT 带来的潜在剂量计算准确性提高。使用 CT 成像模拟包 ImaSim 生成校准和剂量计算体模的 80、120 和 140 kVp CT 图像。使用 DECT 算法从高低能图像中获得电子密度 ρ(e)和原子数 Z。在对校准体模进行扫描的校正之后,对于所有原子数 Z∊[6,8]的软组织,除了肺,都可以获得 ±1%的 Z 和 ρ(e)的准确性。基于 DECT 分割的 GEANT4 MC 剂量计算与参考值的偏差在±4%以内,对于(103)Pd,这是对组织误分配最敏感的源。具有三个组织-bin 的 SECT 分割以及 TG-43 方法的准确性较差,误差高达 20%。在我们的 SECT 分割中使用七个组织-bin 带来了(103)Pd 的误差在±10%以内。一般来说,(125)I 剂量计算的准确性高于(103)Pd。模拟图像噪声被发现降低了 DECT 准确性 3-4%。我们的发现表明,与使用七个组织-bin 的 SECT 分割相比,在特定的非拟人化体模中,DECT 分割在 LDR 近距离治疗剂量计算中可提高准确性。我们的结论对于临床几何形状的有效性以及组织分割过程中图像噪声的重要性值得进一步的实验研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验