Suppr超能文献

利用领域信息进行医学文献的词义消歧。

Exploiting domain information for Word Sense Disambiguation of medical documents.

机构信息

Department of Computer Science, Sheffield University, Sheffield, UK.

出版信息

J Am Med Inform Assoc. 2012 Mar-Apr;19(2):235-40. doi: 10.1136/amiajnl-2011-000415. Epub 2011 Sep 7.

Abstract

OBJECTIVE

Current techniques for knowledge-based Word Sense Disambiguation (WSD) of ambiguous biomedical terms rely on relations in the Unified Medical Language System Metathesaurus but do not take into account the domain of the target documents. The authors' goal is to improve these methods by using information about the topic of the document in which the ambiguous term appears.

DESIGN

The authors proposed and implemented several methods to extract lists of key terms associated with Medical Subject Heading terms. These key terms are used to represent the document topic in a knowledge-based WSD system. They are applied both alone and in combination with local context.

MEASUREMENTS

A standard measure of accuracy was calculated over the set of target words in the widely used National Library of Medicine WSD dataset.

RESULTS AND DISCUSSION

The authors report a significant improvement when combining those key terms with local context, showing that domain information improves the results of a WSD system based on the Unified Medical Language System Metathesaurus alone. The best results were obtained using key terms obtained by relevance feedback and weighted by inverse document frequency.

摘要

目的

当前基于知识的生物医学术语歧义消解(WSD)技术依赖于统一医学语言系统术语表中的关系,但并未考虑目标文档的领域。作者的目标是通过使用在出现歧义术语的文档的主题信息来改进这些方法。

设计

作者提出并实现了几种方法来提取与医学主题词相关的关键词列表。这些关键词用于在基于知识的 WSD 系统中表示文档主题。它们单独使用或与局部上下文结合使用。

测量

在广泛使用的国家医学图书馆 WSD 数据集的目标词集上计算了标准准确性度量。

结果与讨论

作者报告说,当将这些关键词与局部上下文结合使用时,准确性有了显著提高,这表明领域信息可以提高仅基于统一医学语言系统术语表的 WSD 系统的结果。使用通过相关性反馈获得的关键词并按逆文档频率加权得到的最佳结果。

相似文献

1
Exploiting domain information for Word Sense Disambiguation of medical documents.利用领域信息进行医学文献的词义消歧。
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):235-40. doi: 10.1136/amiajnl-2011-000415. Epub 2011 Sep 7.
5
Determining the difficulty of Word Sense Disambiguation.确定词义消歧的难度。
J Biomed Inform. 2014 Feb;47:83-90. doi: 10.1016/j.jbi.2013.09.009. Epub 2013 Sep 26.
7
Disambiguation in the biomedical domain: the role of ambiguity type.生物医学领域的消歧:歧义类型的作用。
J Biomed Inform. 2010 Dec;43(6):972-81. doi: 10.1016/j.jbi.2010.08.009. Epub 2010 Sep 9.

引用本文的文献

7
A learning-based approach for biomedical word sense disambiguation.一种基于学习的生物医学词义消歧方法。
ScientificWorldJournal. 2012;2012:949247. doi: 10.1100/2012/949247. Epub 2012 May 1.

本文引用的文献

1
Automatic Indexing of Documents from Journal Descriptors: A Preliminary Investigation.基于期刊描述符的文档自动索引:初步调查
J Am Soc Inf Sci. 1999;50(8):661-674. doi: 10.1002/(SICI)1097-4571(1999)50:8<661::AID-ASI4>3.0.CO;2-R.
3
Graph-based word sense disambiguation of biomedical documents.基于图的生物医学文献词义消歧。
Bioinformatics. 2010 Nov 15;26(22):2889-96. doi: 10.1093/bioinformatics/btq555. Epub 2010 Oct 7.
4
Disambiguation in the biomedical domain: the role of ambiguity type.生物医学领域的消歧:歧义类型的作用。
J Biomed Inform. 2010 Dec;43(6):972-81. doi: 10.1016/j.jbi.2010.08.009. Epub 2010 Sep 9.
6
An overview of MetaMap: historical perspective and recent advances.MetaMap 概述:历史视角与最新进展。
J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36. doi: 10.1136/jamia.2009.002733.
8
Disambiguation of biomedical text using diverse sources of information.利用多种信息来源对生物医学文本进行消歧。
BMC Bioinformatics. 2008 Nov 19;9 Suppl 11(Suppl 11):S7. doi: 10.1186/1471-2105-9-S11-S7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验