Suppr超能文献

一种基于学习的生物医学词义消歧方法。

A learning-based approach for biomedical word sense disambiguation.

作者信息

Al-Mubaid Hisham, Gungu Sandeep

机构信息

University of Houston-Clear Lake, Houston, TX 77058, USA.

出版信息

ScientificWorldJournal. 2012;2012:949247. doi: 10.1100/2012/949247. Epub 2012 May 1.

Abstract

In the biomedical domain, word sense ambiguity is a widely spread problem with bioinformatics research effort devoted to it being not commensurate and allowing for more development. This paper presents and evaluates a learning-based approach for sense disambiguation within the biomedical domain. The main limitation with supervised methods is the need for a corpus of manually disambiguated instances of the ambiguous words. However, the advances in automatic text annotation and tagging techniques with the help of the plethora of knowledge sources like ontologies and text literature in the biomedical domain will help lessen this limitation. The proposed method utilizes the interaction model (mutual information) between the context words and the senses of the target word to induce reliable learning models for sense disambiguation. The method has been evaluated with the benchmark dataset NLM-WSD with various settings and in biomedical entity species disambiguation. The evaluation results showed that the approach is very competitive and outperforms recently reported results of other published techniques.

摘要

在生物医学领域,词义模糊是一个普遍存在的问题,致力于该问题的生物信息学研究工作并不相称,仍有很大的发展空间。本文提出并评估了一种基于学习的生物医学领域词义消歧方法。监督方法的主要局限性在于需要一个包含歧义单词手动消歧实例的语料库。然而,借助生物医学领域中诸如本体和文本等大量知识源的自动文本注释和标记技术的进步,将有助于减轻这一局限性。所提出的方法利用上下文单词与目标词词义之间的交互模型(互信息)来诱导可靠的词义消歧学习模型。该方法已使用基准数据集NLM-WSD在各种设置下以及在生物医学实体物种消歧中进行了评估。评估结果表明,该方法具有很强的竞争力,优于最近报道的其他已发表技术的结果。

相似文献

1
A learning-based approach for biomedical word sense disambiguation.一种基于学习的生物医学词义消歧方法。
ScientificWorldJournal. 2012;2012:949247. doi: 10.1100/2012/949247. Epub 2012 May 1.
4
Supervised Learning and Knowledge-Based Approaches Applied to Biomedical Word Sense Disambiguation.应用于生物医学词义消歧的监督学习和基于知识的方法。
J Integr Bioinform. 2017 Dec 13;14(4):/j/jib.2017.14.issue-4/jib-2017-0051/jib-2017-0051.xml. doi: 10.1515/jib-2017-0051.
7
Knowledge-Based Biomedical Word Sense Disambiguation with Neural Concept Embeddings.基于知识的生物医学词汇语义消歧与神经概念嵌入
Proc IEEE Int Symp Bioinformatics Bioeng. 2017 Oct;2017:163-170. doi: 10.1109/BIBE.2017.00-61. Epub 2018 Jan 11.
9
A novel framework for biomedical entity sense induction.一种用于生物医学实体感知归纳的新框架。
J Biomed Inform. 2018 Aug;84:31-41. doi: 10.1016/j.jbi.2018.06.007. Epub 2018 Jun 20.
10
Determining the difficulty of Word Sense Disambiguation.确定词义消歧的难度。
J Biomed Inform. 2014 Feb;47:83-90. doi: 10.1016/j.jbi.2013.09.009. Epub 2013 Sep 26.

引用本文的文献

1
A novel framework for biomedical entity sense induction.一种用于生物医学实体感知归纳的新框架。
J Biomed Inform. 2018 Aug;84:31-41. doi: 10.1016/j.jbi.2018.06.007. Epub 2018 Jun 20.

本文引用的文献

2
Exploiting domain information for Word Sense Disambiguation of medical documents.利用领域信息进行医学文献的词义消歧。
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):235-40. doi: 10.1136/amiajnl-2011-000415. Epub 2011 Sep 7.
4
Graph-based word sense disambiguation of biomedical documents.基于图的生物医学文献词义消歧。
Bioinformatics. 2010 Nov 15;26(22):2889-96. doi: 10.1093/bioinformatics/btq555. Epub 2010 Oct 7.
8
Disambiguation of biomedical text using diverse sources of information.利用多种信息来源对生物医学文本进行消歧。
BMC Bioinformatics. 2008 Nov 19;9 Suppl 11(Suppl 11):S7. doi: 10.1186/1471-2105-9-S11-S7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验