The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan.
Chem Soc Rev. 2011 Dec;40(12):5893-909. doi: 10.1039/c1cs15153c. Epub 2011 Sep 7.
In contrast to B-DNA that has a right-handed double helical structure with Watson-Crick base pairing under the ordinary physiological conditions, repetitive DNA sequences under certain conditions have the potential to fold into non-B DNA structures such as hairpin, triplex, cruciform, left-handed Z-form, tetraplex, A-motif, etc. Since the non-B DNA-forming sequences induce the genetic instability and consequently can cause human diseases, the molecular mechanism for their genetic instability has been extensively investigated. On the contrary, non-B DNA can be widely used for application in biotechnology because many DNA breakage hotspots are mapped in or near the sequences that have the potential to adopt non-B DNA structures. In addition, they are regarded as a fascinating material for the nanotechnology using non-B DNAs because they do not produce any toxic byproducts and are robust enough for the repetitive working cycle. This being the case, an understanding on the mechanism and dynamics of their structural changes is important. In this critical review, we describe the latest studies on the conformational dynamics of non-B DNAs, with a focus on G-quadruplex, i-motif, Z-DNA, A-motif, hairpin and triplex (189 references).
与普通生理条件下具有沃森-克里克碱基配对的右手双螺旋结构的 B-DNA 相反,在某些条件下,重复 DNA 序列有可能折叠成非 B-DNA 结构,如发夹、三链体、十字形、左手 Z 形、四链体、A 基序等。由于形成非 B-DNA 的序列会引起遗传不稳定性,从而可能导致人类疾病,因此它们的遗传不稳定性的分子机制已被广泛研究。相反,非 B-DNA 可以广泛应用于生物技术,因为许多 DNA 断裂热点都映射在或靠近具有形成非 B-DNA 结构潜力的序列中。此外,由于它们不会产生任何有毒副产物,并且足以进行重复工作循环,因此它们被认为是使用非 B-DNA 的纳米技术的迷人材料。在这种情况下,了解它们结构变化的机制和动力学非常重要。在这篇评论中,我们描述了非 B-DNA 构象动力学的最新研究进展,重点介绍了 G-四链体、i-基序、Z-DNA、A-基序、发夹和三链体(189 篇参考文献)。