Suppr超能文献

树突棘和分布式电路。

Dendritic spines and distributed circuits.

机构信息

HHMI, Department Biological Sciences, Columbia University, New York, NY 10027, USA.

出版信息

Neuron. 2011 Sep 8;71(5):772-81. doi: 10.1016/j.neuron.2011.07.024.

Abstract

Dendritic spines receive most excitatory connections in pyramidal cells and many other principal neurons. But why do neurons use spines, when they could accommodate excitatory contacts directly on their dendritic shafts? One suggestion is that spines serve to connect with passing axons, thus increasing the connectivity of the dendrites. Another hypothesis is that spines are biochemical compartments that enable input-specific synaptic plasticity. A third possibility is that spines have an electrical role, filtering synaptic potentials and electrically isolating inputs from each other. In this review, I argue that, when viewed from the perspective of the circuit function, these three functions dovetail with one another to achieve a single overarching goal: to implement a distributed circuit with widespread connectivity. Spines would endow these circuits with nonsaturating, linear integration and input-specific learning rules, which would enable them to function as neural networks, with emergent encoding and processing of information.

摘要

树突棘接收来自于锥体神经元和其他许多主要神经元的大多数兴奋性连接。但是,既然神经元的树突干也可以容纳兴奋性接触,那么它们为什么还要使用树突棘呢?一种观点认为,树突棘用于与经过的轴突连接,从而增加树突的连接性。另一种假说认为,树突棘是生化隔室,能够实现输入特异性突触可塑性。第三种可能性是,树突棘具有电作用,可以滤过突触电位,并使输入彼此之间相互隔离。在这篇综述中,我认为,从电路功能的角度来看,这三个功能彼此吻合,共同实现一个总体目标:构建具有广泛连接的分布式电路。树突棘将为这些电路提供非饱和、线性整合和输入特异性学习规则,从而使它们能够作为神经网络发挥作用,对信息进行新的编码和处理。

相似文献

1
Dendritic spines and distributed circuits.
Neuron. 2011 Sep 8;71(5):772-81. doi: 10.1016/j.neuron.2011.07.024.
2
Electrical compartmentalization in dendritic spines.
Annu Rev Neurosci. 2013 Jul 8;36:429-49. doi: 10.1146/annurev-neuro-062111-150455. Epub 2013 May 29.
3
Dendritic spines and linear networks.
J Physiol Paris. 2004 Jul-Nov;98(4-6):479-86. doi: 10.1016/j.jphysparis.2005.09.014. Epub 2005 Nov 23.
4
Do thin spines learn to be mushroom spines that remember?
Curr Opin Neurobiol. 2007 Jun;17(3):381-6. doi: 10.1016/j.conb.2007.04.009. Epub 2007 May 10.
5
Dendritic spines linearize the summation of excitatory potentials.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18799-804. doi: 10.1073/pnas.0609225103. Epub 2006 Nov 28.
7
Locally synchronized synaptic inputs.
Science. 2012 Jan 20;335(6066):353-6. doi: 10.1126/science.1210362.
8
Electrical advantages of dendritic spines.
PLoS One. 2012;7(4):e36007. doi: 10.1371/journal.pone.0036007. Epub 2012 Apr 20.
9
Synaptic amplification by dendritic spines enhances input cooperativity.
Nature. 2012 Nov 22;491(7425):599-602. doi: 10.1038/nature11554. Epub 2012 Oct 28.
10
Dendritic spine plasticity: looking beyond development.
Brain Res. 2007 Dec 12;1184:65-71. doi: 10.1016/j.brainres.2006.02.094. Epub 2006 Apr 5.

引用本文的文献

1
4
Spine loss in depression impairs dendritic signal integration in human cortical microcircuit models.
iScience. 2025 Mar 3;28(5):112136. doi: 10.1016/j.isci.2025.112136. eCollection 2025 May 16.
5
Potassium-Dependent Coupling of Retinal Astrocyte Light Response to Müller Glia.
Glia. 2025 Jul;73(7):1520-1534. doi: 10.1002/glia.70022. Epub 2025 Apr 22.
7
Overabundant endocannabinoids in neurons are detrimental to cognitive function.
bioRxiv. 2024 Sep 17:2024.09.17.613513. doi: 10.1101/2024.09.17.613513.
8
Dendritic Morphology of Developing Hippocampal Neurons in Cyp11a1 Null Mice.
Dev Neurosci. 2025;47(3):157-171. doi: 10.1159/000540106. Epub 2024 Jul 17.
9
AFM Imaging Reveals MicroRNA-132 to be a Positive Regulator of Synaptic Functions.
Adv Sci (Weinh). 2024 May;11(17):e2306630. doi: 10.1002/advs.202306630. Epub 2024 Mar 17.
10
Distinct Alterations in Dendritic Spine Morphology in the Absence of β-Neurexins.
Int J Mol Sci. 2024 Jan 20;25(2):1285. doi: 10.3390/ijms25021285.

本文引用的文献

2
Functional mapping of single spines in cortical neurons in vivo.
Nature. 2011 Jun 26;475(7357):501-5. doi: 10.1038/nature10193.
3
Distinct representations of olfactory information in different cortical centres.
Nature. 2011 Apr 14;472(7342):213-6. doi: 10.1038/nature09868. Epub 2011 Mar 30.
4
Dense inhibitory connectivity in neocortex.
Neuron. 2011 Mar 24;69(6):1188-203. doi: 10.1016/j.neuron.2011.02.025.
5
Optogenetics.
Nat Methods. 2011 Jan;8(1):26-9. doi: 10.1038/nmeth.f.324. Epub 2010 Dec 20.
6
Cortical representations of olfactory input by trans-synaptic tracing.
Nature. 2011 Apr 14;472(7342):191-6. doi: 10.1038/nature09714. Epub 2010 Dec 22.
7
Dendritic organization of sensory input to cortical neurons in vivo.
Nature. 2010 Apr 29;464(7293):1307-12. doi: 10.1038/nature08947.
8
Representations of odor in the piriform cortex.
Neuron. 2009 Sep 24;63(6):854-64. doi: 10.1016/j.neuron.2009.09.005.
9
Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons.
J Neurosci. 2009 Sep 23;29(38):11891-903. doi: 10.1523/JNEUROSCI.5250-08.2009.
10
Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.
PLoS Biol. 2009 Sep;7(9):e1000190. doi: 10.1371/journal.pbio.1000190. Epub 2009 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验