Suppr超能文献

树突棘和分布式电路。

Dendritic spines and distributed circuits.

机构信息

HHMI, Department Biological Sciences, Columbia University, New York, NY 10027, USA.

出版信息

Neuron. 2011 Sep 8;71(5):772-81. doi: 10.1016/j.neuron.2011.07.024.

Abstract

Dendritic spines receive most excitatory connections in pyramidal cells and many other principal neurons. But why do neurons use spines, when they could accommodate excitatory contacts directly on their dendritic shafts? One suggestion is that spines serve to connect with passing axons, thus increasing the connectivity of the dendrites. Another hypothesis is that spines are biochemical compartments that enable input-specific synaptic plasticity. A third possibility is that spines have an electrical role, filtering synaptic potentials and electrically isolating inputs from each other. In this review, I argue that, when viewed from the perspective of the circuit function, these three functions dovetail with one another to achieve a single overarching goal: to implement a distributed circuit with widespread connectivity. Spines would endow these circuits with nonsaturating, linear integration and input-specific learning rules, which would enable them to function as neural networks, with emergent encoding and processing of information.

摘要

树突棘接收来自于锥体神经元和其他许多主要神经元的大多数兴奋性连接。但是,既然神经元的树突干也可以容纳兴奋性接触,那么它们为什么还要使用树突棘呢?一种观点认为,树突棘用于与经过的轴突连接,从而增加树突的连接性。另一种假说认为,树突棘是生化隔室,能够实现输入特异性突触可塑性。第三种可能性是,树突棘具有电作用,可以滤过突触电位,并使输入彼此之间相互隔离。在这篇综述中,我认为,从电路功能的角度来看,这三个功能彼此吻合,共同实现一个总体目标:构建具有广泛连接的分布式电路。树突棘将为这些电路提供非饱和、线性整合和输入特异性学习规则,从而使它们能够作为神经网络发挥作用,对信息进行新的编码和处理。

相似文献

1
Dendritic spines and distributed circuits.树突棘和分布式电路。
Neuron. 2011 Sep 8;71(5):772-81. doi: 10.1016/j.neuron.2011.07.024.
2
Electrical compartmentalization in dendritic spines.树突棘的电分隔。
Annu Rev Neurosci. 2013 Jul 8;36:429-49. doi: 10.1146/annurev-neuro-062111-150455. Epub 2013 May 29.
3
Dendritic spines and linear networks.树突棘和线性网络。
J Physiol Paris. 2004 Jul-Nov;98(4-6):479-86. doi: 10.1016/j.jphysparis.2005.09.014. Epub 2005 Nov 23.
4
Do thin spines learn to be mushroom spines that remember?纤细的棘突会学着变成具有记忆功能的蘑菇状棘突吗?
Curr Opin Neurobiol. 2007 Jun;17(3):381-6. doi: 10.1016/j.conb.2007.04.009. Epub 2007 May 10.
5
Dendritic spines linearize the summation of excitatory potentials.树突棘使兴奋性电位的总和呈线性化。
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18799-804. doi: 10.1073/pnas.0609225103. Epub 2006 Nov 28.
7
Locally synchronized synaptic inputs.局部同步的突触输入。
Science. 2012 Jan 20;335(6066):353-6. doi: 10.1126/science.1210362.
8
Electrical advantages of dendritic spines.树突棘的电学优势。
PLoS One. 2012;7(4):e36007. doi: 10.1371/journal.pone.0036007. Epub 2012 Apr 20.
9
Synaptic amplification by dendritic spines enhances input cooperativity.树突棘的突触放大增强了输入协同性。
Nature. 2012 Nov 22;491(7425):599-602. doi: 10.1038/nature11554. Epub 2012 Oct 28.
10
Dendritic spine plasticity: looking beyond development.树突棘可塑性:超越发育的研究
Brain Res. 2007 Dec 12;1184:65-71. doi: 10.1016/j.brainres.2006.02.094. Epub 2006 Apr 5.

引用本文的文献

本文引用的文献

4
Dense inhibitory connectivity in neocortex.新皮层中的密集抑制性连接。
Neuron. 2011 Mar 24;69(6):1188-203. doi: 10.1016/j.neuron.2011.02.025.
5
Optogenetics.光遗传学。
Nat Methods. 2011 Jan;8(1):26-9. doi: 10.1038/nmeth.f.324. Epub 2010 Dec 20.
6
Cortical representations of olfactory input by trans-synaptic tracing.嗅传入的皮质代表通过突触追踪。
Nature. 2011 Apr 14;472(7342):191-6. doi: 10.1038/nature09714. Epub 2010 Dec 22.
8
Representations of odor in the piriform cortex.梨状皮层中气味的表征。
Neuron. 2009 Sep 24;63(6):854-64. doi: 10.1016/j.neuron.2009.09.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验