Max Planck Institute of Neurobiology, Am Klopferspitz 18, D-82152 Martinsried, Germany.
Neuron. 2011 Sep 8;71(5):869-82. doi: 10.1016/j.neuron.2011.06.034.
A fundamental property of neuronal circuits is the ability to adapt to altered sensory inputs. It is well established that the functional synaptic changes underlying this adaptation are reflected by structural modifications in excitatory neurons. In contrast, the degree to which structural plasticity in inhibitory neurons accompanies functional changes is less clear. Here, we use two-photon imaging to monitor the fine structure of inhibitory neurons in mouse visual cortex after deprivation induced by retinal lesions. We find that a subset of inhibitory neurons carry dendritic spines, which form glutamatergic synapses. Removal of visual input correlates with a rapid and lasting reduction in the number of inhibitory cell spines. Similar to the effects seen for dendritic spines, the number of inhibitory neuron boutons dropped sharply after retinal lesions. Together, these data suggest that structural changes in inhibitory neurons may precede structural changes in excitatory circuitry, which ultimately result in functional adaptation following sensory deprivation.
神经元回路的一个基本特性是能够适应改变的感觉输入。已经证实,这种适应所基于的功能突触变化反映在兴奋性神经元的结构修饰中。相比之下,抑制性神经元的结构可塑性伴随功能变化的程度尚不清楚。在这里,我们使用双光子成像在视网膜损伤诱导的剥夺后监测小鼠视觉皮层中抑制性神经元的精细结构。我们发现,抑制性神经元的一部分带有形成谷氨酸能突触的树突棘。视觉输入的去除与抑制性细胞棘突数量的快速和持续减少相关。与树突棘的影响相似,视网膜损伤后抑制性神经元末梢的数量急剧下降。总之,这些数据表明,抑制性神经元的结构变化可能先于兴奋性回路的结构变化,这最终导致感觉剥夺后的功能适应。