Suppr超能文献

基于U估计的惩罚变量选择

Penalized variable selection with U-estimates.

作者信息

Song Xiao, Ma Shuangge

机构信息

Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA.

出版信息

J Nonparametr Stat. 2010;22(4):499-515. doi: 10.1080/10485250903348781.

Abstract

U-estimates are defined as maximizers of objective functions that are U-statistics. As an alternative to M-estimates, U-estimates have been extensively used in linear regression, classification, survival analysis, and many other areas. They may rely on weaker data and model assumptions and be preferred over alternatives. In this article, we investigate penalized variable selection with U-estimates. We propose smooth approximations of the objective functions, which can greatly reduce computational cost without affecting asymptotic properties. We study penalized variable selection using penalties that have been well investigated with M-estimates, including the LASSO, adaptive LASSO, and bridge, and establish their asymptotic properties. Generically applicable computational algorithms are described. Performance of the penalized U-estimates is assessed using numerical studies.

摘要

U估计被定义为作为U统计量的目标函数的最大化者。作为M估计的替代方法,U估计已广泛应用于线性回归、分类、生存分析以及许多其他领域。它们可能依赖于较弱的数据和模型假设,并且比其他方法更受青睐。在本文中,我们研究了使用U估计进行惩罚变量选择。我们提出了目标函数的平滑近似,这可以在不影响渐近性质的情况下大大降低计算成本。我们使用已对M估计进行充分研究的惩罚,包括LASSO、自适应LASSO和桥接惩罚,来研究惩罚变量选择,并建立它们的渐近性质。描述了通用的计算算法。使用数值研究评估了惩罚U估计的性能。

相似文献

1
Penalized variable selection with U-estimates.基于U估计的惩罚变量选择
J Nonparametr Stat. 2010;22(4):499-515. doi: 10.1080/10485250903348781.
2
ADAPTIVE ROBUST VARIABLE SELECTION.自适应鲁棒变量选择
Ann Stat. 2014 Feb 1;42(1):324-351. doi: 10.1214/13-AOS1191.
10
Simultaneous variable selection and estimation for a partially linear Cox model.部分线性Cox模型的同步变量选择与估计
Stat Methods Med Res. 2025 Apr;34(4):783-795. doi: 10.1177/09622802251322988. Epub 2025 Mar 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验