Suppr超能文献

一种用于识别基因-环境交互作用的惩罚稳健方法。

A penalized robust method for identifying gene-environment interactions.

机构信息

School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China; Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut, United States of America.

出版信息

Genet Epidemiol. 2014 Apr;38(3):220-30. doi: 10.1002/gepi.21795. Epub 2014 Feb 24.

Abstract

In high-throughput studies, an important objective is to identify gene-environment interactions associated with disease outcomes and phenotypes. Many commonly adopted methods assume specific parametric or semiparametric models, which may be subject to model misspecification. In addition, they usually use significance level as the criterion for selecting important interactions. In this study, we adopt the rank-based estimation, which is much less sensitive to model specification than some of the existing methods and includes several commonly encountered data and models as special cases. Penalization is adopted for the identification of gene-environment interactions. It achieves simultaneous estimation and identification and does not rely on significance level. For computation feasibility, a smoothed rank estimation is further proposed. Simulation shows that under certain scenarios, for example, with contaminated or heavy-tailed data, the proposed method can significantly outperform the existing alternatives with more accurate identification. We analyze a lung cancer prognosis study with gene expression measurements under the AFT (accelerated failure time) model. The proposed method identifies interactions different from those using the alternatives. Some of the identified genes have important implications.

摘要

在高通量研究中,一个重要的目标是确定与疾病结果和表型相关的基因-环境相互作用。许多常用的方法假设特定的参数或半参数模型,这些模型可能存在模型误设的问题。此外,它们通常使用显著水平作为选择重要相互作用的标准。在这项研究中,我们采用基于排名的估计,它比一些现有的方法对模型规范的敏感性要低得多,并且包括了几种常见的数据和模型作为特例。惩罚用于识别基因-环境相互作用。它实现了同时估计和识别,不依赖于显著水平。为了计算可行性,我们进一步提出了平滑的秩估计。模拟表明,在某些情况下,例如数据受到污染或具有重尾,所提出的方法可以显著优于现有的替代方法,从而更准确地识别。我们分析了一个肺癌预后研究,其中包括基因表达测量在 AFT(加速失效时间)模型下的数据。所提出的方法识别出的相互作用与使用替代方法的不同。一些确定的基因具有重要的意义。

相似文献

引用本文的文献

1
High-Dimensional Gene-Environment Interaction Analysis.高维基因-环境相互作用分析
Annu Rev Stat Appl. 2025 Mar;12. doi: 10.1146/annurev-statistics-112723-034315. Epub 2024 Sep 11.
4
Unified model-free interaction screening via CV-entropy filter.通过CV熵滤波器进行统一的无模型相互作用筛选。
Comput Stat Data Anal. 2023 Apr;180. doi: 10.1016/j.csda.2022.107684. Epub 2022 Dec 28.
9
Identification of gene-environment interactions with marginal penalization.边缘惩罚法鉴定基因-环境交互作用。
Genet Epidemiol. 2020 Mar;44(2):159-196. doi: 10.1002/gepi.22270. Epub 2019 Nov 14.

本文引用的文献

6
Penalized variable selection with U-estimates.基于U估计的惩罚变量选择
J Nonparametr Stat. 2010;22(4):499-515. doi: 10.1080/10485250903348781.
7
Anterior gradient 2 overexpression in lung adenocarcinoma.前梯度2在肺腺癌中的过表达。
Appl Immunohistochem Mol Morphol. 2012 Jan;20(1):31-6. doi: 10.1097/PAI.0b013e3182233f9f.
10
Time-dependent ROC analysis under diverse censoring patterns.基于不同删失模式的时依 ROC 分析。
Stat Med. 2011 May 20;30(11):1266-77. doi: 10.1002/sim.4178. Epub 2011 Jan 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验