Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America.
PLoS One. 2011;6(8):e24287. doi: 10.1371/journal.pone.0024287. Epub 2011 Aug 31.
Methyltransferases possess a homologous domain that requires both a divalent metal cation and S-adenosyl-L-methionine (SAM) to catalyze its reactions. The kinetics of several methyltransferases has been well characterized; however, the details regarding their structural mechanisms have remained unclear to date. Using catechol O-methyltransferase (COMT) as a model, we perform discrete molecular dynamics and computational docking simulations to elucidate the initial stages of cofactor binding. We find that COMT binds SAM via an induced-fit mechanism, where SAM adopts a different docking pose in the absence of metal and substrate in comparison to the holoenzyme. Flexible modeling of the active site side-chains is essential for observing the lowest energy state in the apoenzyme; rigid docking tools are unable to recapitulate the pose unless the appropriate side-chain conformations are given a priori. From our docking results, we hypothesize that the metal reorients SAM in a conformation suitable for donating its methyl substituent to the recipient ligand. The proposed mechanism enables a general understanding of how divalent metal cations contribute to methyltransferase function.
甲基转移酶具有一个同源结构域,该结构域需要二价金属阳离子和 S-腺苷甲硫氨酸(SAM)来催化其反应。几种甲基转移酶的动力学已得到很好的描述;然而,其结构机制的细节迄今仍不清楚。我们使用儿茶酚-O-甲基转移酶(COMT)作为模型,通过离散分子动力学和计算对接模拟来阐明辅助因子结合的初始阶段。我们发现 COMT 通过诱导契合机制与 SAM 结合,与酶全酶相比,在没有金属和底物的情况下,SAM 采用不同的对接构象。对活性位点侧链进行灵活建模对于观察无蛋白状态下的最低能量状态至关重要;刚性对接工具无法再现该构象,除非预先给定适当的侧链构象。根据我们的对接结果,我们假设金属将 SAM 重新定向到一种适合将其甲基取代基捐赠给受体配体的构象。所提出的机制使我们能够普遍了解二价金属阳离子如何促进甲基转移酶的功能。