Suppr超能文献

美杜莎评分:一种用于虚拟药物筛选的基于准确力场的评分函数。

MedusaScore: an accurate force field-based scoring function for virtual drug screening.

作者信息

Yin Shuangye, Biedermannova Lada, Vondrasek Jiri, Dokholyan Nikolay V

机构信息

Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

J Chem Inf Model. 2008 Aug;48(8):1656-62. doi: 10.1021/ci8001167. Epub 2008 Aug 2.

Abstract

Virtual screening is becoming an important tool for drug discovery. However, the application of virtual screening has been limited by the lack of accurate scoring functions. Here, we present a novel scoring function, MedusaScore, for evaluating protein-ligand binding. MedusaScore is based on models of physical interactions that include van der Waals, solvation, and hydrogen bonding energies. To ensure the best transferability of the scoring function, we do not use any protein-ligand experimental data for parameter training. We then test the MedusaScore for docking decoy recognition and binding affinity prediction and find superior performance compared to other widely used scoring functions. Statistical analysis indicates that one source of inaccuracy of MedusaScore may arise from the unaccounted entropic loss upon ligand binding, which suggests avenues of approach for further MedusaScore improvement.

摘要

虚拟筛选正成为药物发现的一项重要工具。然而,虚拟筛选的应用一直受到缺乏准确评分函数的限制。在此,我们提出一种用于评估蛋白质-配体结合的新型评分函数——美杜莎评分(MedusaScore)。美杜莎评分基于包括范德华力、溶剂化作用和氢键能在内的物理相互作用模型。为确保评分函数具有最佳的可转移性,我们在参数训练中未使用任何蛋白质-配体实验数据。然后,我们测试了美杜莎评分在对接诱饵识别和结合亲和力预测方面的表现,发现其性能优于其他广泛使用的评分函数。统计分析表明,美杜莎评分不准确的一个原因可能是配体结合时未考虑到的熵损失,这为进一步改进美杜莎评分指明了方向。

相似文献

5
Development of a New Scoring Function for Virtual Screening: APBScore.开发一种新的虚拟筛选评分函数:APBScore。
J Chem Inf Model. 2020 Dec 28;60(12):6355-6365. doi: 10.1021/acs.jcim.0c00474. Epub 2020 Oct 14.
7
GemAffinity: a scoring function for predicting binding affinity and virtual screening.
Int J Data Min Bioinform. 2012;6(1):27-41. doi: 10.1504/ijdmb.2012.045535.

引用本文的文献

4
Computational insights into the aggregation mechanism of human calcitonin.对人降钙素聚集机制的计算洞察。
Int J Biol Macromol. 2025 Mar;294:139520. doi: 10.1016/j.ijbiomac.2025.139520. Epub 2025 Jan 4.

本文引用的文献

6
Ligand configurational entropy and protein binding.配体构象熵与蛋白质结合。
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1534-9. doi: 10.1073/pnas.0610494104. Epub 2007 Jan 22.
10
Emergence of protein fold families through rational design.通过理性设计实现蛋白质折叠家族的出现。
PLoS Comput Biol. 2006 Jul 7;2(7):e85. doi: 10.1371/journal.pcbi.0020085. Epub 2006 May 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验