Suppr超能文献

使用配体的随机构象文库进行快速灵活对接。

Rapid flexible docking using a stochastic rotamer library of ligands.

机构信息

Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599, USA.

出版信息

J Chem Inf Model. 2010 Sep 27;50(9):1623-32. doi: 10.1021/ci100218t.

Abstract

Existing flexible docking approaches model the ligand and receptor flexibility either separately or in a loosely coupled manner, which captures the conformational changes inefficiently. Here, we propose a flexible docking approach, MedusaDock, which models both ligand and receptor flexibility simultaneously with sets of discrete rotamers. We developed an algorithm to build the ligand rotamer library "on-the-fly" during docking simulations. MedusaDock benchmarks demonstrate a rapid sampling efficiency and high prediction accuracy in both self- (to the cocrystallized state) and cross-docking (to a state cocrystallized with a different ligand), the latter of which mimics the virtual screening procedure in computational drug discovery. We also perform a virtual screening test of four flexible kinase targets, including cyclin-dependent kinase 2, vascular endothelial growth factor receptor 2, HIV reverse transcriptase, and HIV protease. We find significant improvements of virtual screening enrichments when compared to rigid-receptor methods. The predictive power of MedusaDock in cross-docking and preliminary virtual-screening benchmarks highlights the importance to model both ligand and receptor flexibility simultaneously in computational docking.

摘要

现有的柔性对接方法要么分别对配体和受体的柔性建模,要么以松散耦合的方式对其进行建模,这两种方法都不能有效地捕捉构象变化。在这里,我们提出了一种名为 MedusaDock 的柔性对接方法,该方法使用离散的构象异构体集同时对配体和受体的柔性进行建模。我们开发了一种算法,可在对接模拟过程中“即时”构建配体构象异构体库。MedusaDock 的基准测试在自对接(至共晶状态)和交叉对接(至与不同配体共晶的状态)中均表现出快速的采样效率和较高的预测准确性,后者模拟了计算药物发现中的虚拟筛选过程。我们还对四个灵活的激酶靶标(包括细胞周期蛋白依赖性激酶 2、血管内皮生长因子受体 2、HIV 逆转录酶和 HIV 蛋白酶)进行了虚拟筛选测试。与刚性受体方法相比,我们发现虚拟筛选的富集度有了显著提高。MedusaDock 在交叉对接和初步虚拟筛选基准测试中的预测能力突显了在计算对接中同时对配体和受体的柔性进行建模的重要性。

相似文献

引用本文的文献

2
Whole proteome mapping of compound-protein interactions.化合物-蛋白质相互作用的全蛋白质组图谱绘制。
Curr Res Chem Biol. 2022;2. doi: 10.1016/j.crchbi.2022.100035. Epub 2022 Sep 12.
3
An Overview of Antiviral Peptides and Rational Biodesign Considerations.抗病毒肽概述及合理的生物设计考量
Biodes Res. 2022 May 17;2022:9898241. doi: 10.34133/2022/9898241. eCollection 2022.
5
Predicting Protein-Ligand Docking Structure with Graph Neural Network.基于图神经网络的蛋白配体对接结构预测。
J Chem Inf Model. 2022 Jun 27;62(12):2923-2932. doi: 10.1021/acs.jcim.2c00127. Epub 2022 Jun 14.
6
NeuralDock: Rapid and Conformation-Agnostic Docking of Small Molecules.NeuralDock:小分子的快速且与构象无关的对接
Front Mol Biosci. 2022 Mar 22;9:867241. doi: 10.3389/fmolb.2022.867241. eCollection 2022.
10
GPU-Accelerated Flexible Molecular Docking.GPU加速的灵活分子对接
J Phys Chem B. 2021 Feb 4;125(4):1049-1060. doi: 10.1021/acs.jpcb.0c09051. Epub 2021 Jan 26.

本文引用的文献

4
RosettaLigand docking with full ligand and receptor flexibility.具有完全配体和受体灵活性的RosettaLigand对接
J Mol Biol. 2009 Jan 16;385(2):381-92. doi: 10.1016/j.jmb.2008.11.010. Epub 2008 Nov 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验