Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599, USA.
J Chem Inf Model. 2010 Sep 27;50(9):1623-32. doi: 10.1021/ci100218t.
Existing flexible docking approaches model the ligand and receptor flexibility either separately or in a loosely coupled manner, which captures the conformational changes inefficiently. Here, we propose a flexible docking approach, MedusaDock, which models both ligand and receptor flexibility simultaneously with sets of discrete rotamers. We developed an algorithm to build the ligand rotamer library "on-the-fly" during docking simulations. MedusaDock benchmarks demonstrate a rapid sampling efficiency and high prediction accuracy in both self- (to the cocrystallized state) and cross-docking (to a state cocrystallized with a different ligand), the latter of which mimics the virtual screening procedure in computational drug discovery. We also perform a virtual screening test of four flexible kinase targets, including cyclin-dependent kinase 2, vascular endothelial growth factor receptor 2, HIV reverse transcriptase, and HIV protease. We find significant improvements of virtual screening enrichments when compared to rigid-receptor methods. The predictive power of MedusaDock in cross-docking and preliminary virtual-screening benchmarks highlights the importance to model both ligand and receptor flexibility simultaneously in computational docking.
现有的柔性对接方法要么分别对配体和受体的柔性建模,要么以松散耦合的方式对其进行建模,这两种方法都不能有效地捕捉构象变化。在这里,我们提出了一种名为 MedusaDock 的柔性对接方法,该方法使用离散的构象异构体集同时对配体和受体的柔性进行建模。我们开发了一种算法,可在对接模拟过程中“即时”构建配体构象异构体库。MedusaDock 的基准测试在自对接(至共晶状态)和交叉对接(至与不同配体共晶的状态)中均表现出快速的采样效率和较高的预测准确性,后者模拟了计算药物发现中的虚拟筛选过程。我们还对四个灵活的激酶靶标(包括细胞周期蛋白依赖性激酶 2、血管内皮生长因子受体 2、HIV 逆转录酶和 HIV 蛋白酶)进行了虚拟筛选测试。与刚性受体方法相比,我们发现虚拟筛选的富集度有了显著提高。MedusaDock 在交叉对接和初步虚拟筛选基准测试中的预测能力突显了在计算对接中同时对配体和受体的柔性进行建模的重要性。