Suppr超能文献

一种用于探测大颗粒通过水凝胶的整体粒子输送的吸附色谱分析方法。

An adsorption chromatography assay to probe bulk particle transport through hydrogels.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

J Pharm Sci. 2012 Jan;101(1):436-42. doi: 10.1002/jps.22737. Epub 2011 Sep 8.

Abstract

Biopolymer-based hydrogels such as mucus and the basal lamina play a key role in biology, where they control the exchange of material between different compartments. They also pose a barrier that needs to be overcome for successful drug delivery. Characterizing the permeability properties of such hydrogels is mandatory for the development of suitable drug delivery vectors and pharmaceutics. Here, we present an experimental method to measure bulk particle transport through hydrogels. We validate our assay by applying it to mucin hydrogels and show that the permeability properties of these mucin hydrogels can be modulated by polymer density and pH, in agreement with previous results obtained from single particle tracking. The method we present here is easy to handle, inexpensive, and high-throughput compatible. It is also a suitable platform for the design and screening of drugs that aim at modifying the barrier properties of hydrogels. This system can also aid in the characterization and development of synthetic gels for a range of biomedical applications.

摘要

基于生物聚合物的水凝胶,如黏液和基底层,在生物学中起着关键作用,它们控制着不同隔室之间物质的交换。它们还构成了一个需要克服的障碍,以实现成功的药物传递。为了开发合适的药物传递载体和药物制剂,对这种水凝胶的渗透性能进行特征描述是强制性的。在这里,我们提出了一种测量通过水凝胶的体相粒子传输的实验方法。我们通过将其应用于粘蛋白水凝胶来验证我们的测定法,并表明这些粘蛋白水凝胶的渗透性能可以通过聚合物密度和 pH 值来调节,这与从单颗粒跟踪获得的先前结果一致。我们在这里提出的方法易于操作、成本低廉、且与高通量兼容。它也是设计和筛选旨在改变水凝胶屏障性能的药物的合适平台。该系统还可以帮助对各种生物医学应用的合成凝胶进行表征和开发。

相似文献

1
An adsorption chromatography assay to probe bulk particle transport through hydrogels.
J Pharm Sci. 2012 Jan;101(1):436-42. doi: 10.1002/jps.22737. Epub 2011 Sep 8.
2
Characterization of particle translocation through mucin hydrogels.
Biophys J. 2010 May 19;98(9):1782-9. doi: 10.1016/j.bpj.2010.01.012.
3
Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier.
Biophys J. 2013 Sep 17;105(6):1357-65. doi: 10.1016/j.bpj.2013.07.050.
4
Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery.
Acta Biomater. 2015 Jul;20:51-59. doi: 10.1016/j.actbio.2015.03.024. Epub 2015 Mar 25.
5
Mucoadhesive buccal films based on a graft co-polymer - A mucin-retentive hydrogel scaffold.
Eur J Pharm Sci. 2020 Jan 15;142:105142. doi: 10.1016/j.ejps.2019.105142. Epub 2019 Nov 7.
6
A rational approach to form disulfide linked mucin hydrogels.
Soft Matter. 2019 Dec 4;15(47):9632-9639. doi: 10.1039/c9sm01715a.
7
Interactions between drug delivery particles and mucin in solution and at interfaces.
Langmuir. 2008 Mar 18;24(6):2573-9. doi: 10.1021/la702680x. Epub 2008 Feb 5.
8
Novel pH-sensitive physical hydrogels of carboxymethyl scleroglucan.
J Pharm Sci. 2012 Jan;101(1):256-67. doi: 10.1002/jps.22766. Epub 2011 Sep 23.
9
Mucus-Inspired Self-Healing Hydrogels: A Protective Barrier for Cells against Viral Infection.
Adv Mater. 2024 Aug;36(32):e2401745. doi: 10.1002/adma.202401745. Epub 2024 Jun 10.
10
Purified mucins in drug delivery research.
Adv Drug Deliv Rev. 2021 Nov;178:113845. doi: 10.1016/j.addr.2021.113845. Epub 2021 Jun 22.

引用本文的文献

1
Native gastrointestinal mucus: Critical features and techniques for studying interactions with drugs, drug carriers, and bacteria.
Adv Drug Deliv Rev. 2023 Sep;200:114966. doi: 10.1016/j.addr.2023.114966. Epub 2023 Jun 15.
2
Replication of the Taste of Sugar by Formulation of Noncaloric Sweeteners with Mineral Salt Taste Modulator Compositions.
J Agric Food Chem. 2023 Jun 21;71(24):9469-9480. doi: 10.1021/acs.jafc.3c01144. Epub 2023 Jun 7.
3
Enzymatically active biomimetic micropropellers for the penetration of mucin gels.
Sci Adv. 2015 Dec 11;1(11):e1500501. doi: 10.1126/sciadv.1500501. eCollection 2015 Dec.
4
Pediatric laryngotracheal reconstruction with tissue-engineered cartilage in a rabbit model.
Laryngoscope. 2016 Jan;126 Suppl 1(Suppl 1):S5-21. doi: 10.1002/lary.25676. Epub 2015 Oct 15.
5
Mucin biopolymers as broad-spectrum antiviral agents.
Biomacromolecules. 2012 Jun 11;13(6):1724-32. doi: 10.1021/bm3001292. Epub 2012 May 21.

本文引用的文献

1
Biological hydrogels as selective diffusion barriers.
Trends Cell Biol. 2011 Sep;21(9):543-51. doi: 10.1016/j.tcb.2011.06.002. Epub 2011 Jul 3.
2
The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting.
Nanomedicine (Lond). 2010 Nov;5(9):1415-33. doi: 10.2217/nnm.10.113.
3
Characterization of particle translocation through mucin hydrogels.
Biophys J. 2010 May 19;98(9):1782-9. doi: 10.1016/j.bpj.2010.01.012.
4
Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers.
Expert Opin Drug Deliv. 2010 Apr;7(4):479-95. doi: 10.1517/17425240903579971.
5
Selective filtering of particles by the extracellular matrix: an electrostatic bandpass.
Biophys J. 2009 Sep 16;97(6):1569-77. doi: 10.1016/j.bpj.2009.07.009.
6
Helicobacter pylori moves through mucus by reducing mucin viscoelasticity.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14321-6. doi: 10.1073/pnas.0903438106. Epub 2009 Aug 11.
7
Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus.
J Virol. 2009 Nov;83(21):11196-200. doi: 10.1128/JVI.01899-08. Epub 2009 Aug 19.
8
Vesicular carriers for dermal drug delivery.
Expert Opin Drug Deliv. 2009 Aug;6(8):813-25. doi: 10.1517/17425240903071029.
9
Micro- and macrorheology of mucus.
Adv Drug Deliv Rev. 2009 Feb 27;61(2):86-100. doi: 10.1016/j.addr.2008.09.012. Epub 2009 Jan 3.
10
Extracellular barriers in respiratory gene therapy.
Adv Drug Deliv Rev. 2009 Feb 27;61(2):115-27. doi: 10.1016/j.addr.2008.09.011. Epub 2008 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验