Suppr超能文献

兔模型中组织工程软骨用于小儿喉气管重建

Pediatric laryngotracheal reconstruction with tissue-engineered cartilage in a rabbit model.

作者信息

Jacobs Ian N, Redden Robert A, Goldberg Rachel, Hast Michael, Salowe Rebecca, Mauck Robert L, Doolin Edward J

机构信息

Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.

School of Engineering and Applied Sciences at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.

出版信息

Laryngoscope. 2016 Jan;126 Suppl 1(Suppl 1):S5-21. doi: 10.1002/lary.25676. Epub 2015 Oct 15.

Abstract

OBJECTIVES/HYPOTHESIS: To develop an effective rabbit model of in vitro- and in vivo-derived tissue-engineered cartilage for laryngotracheal reconstruction (LTR).

STUDY DESIGN

  1. Determination of the optimal scaffold 1% hyaluronic acid (HA), 2% HA, and polyglycolic acid (PGA) and in vitro culture time course using a pilot study of 4 by 4-mm in vitro-derived constructs analyzed on a static culture versus zero-gravity bioreactor for 4, 8, and 12 weeks, with determination of compressive modulus and histology as outcome measures. 2) Three-stage survival rabbit experiment utilizing autologous auricular chondrocytes seeded in scaffolds, either 1% HA or PGA. The constructs were cultured for the determined in vitro time period and then cultured in vivo for 12 weeks. Fifteen LTRs were performed using HA cartilage constructs, and one was performed with a PGA construct. All remaining specimens and the final reconstructed larynx underwent mechanical testing, histology, and glycosaminoglycan (GAG) content determination, and then were compared to cricoid control specimens (n = 13) and control LTR using autologous thyroid cartilage (n = 18).

METHODS

  1. One rabbit underwent an auricular punch biopsy, and its chondrocytes were isolated and expanded and then encapsulated in eight 4 by 4-mm discs of 1% HA, 2% HA, PGA either in rotary bioreactor or static culture for 4, 8, and 12 weeks, respectively, with determination of compressive modulus, GAG content, and histology. 2) Sixteen rabbits underwent ear punch biopsy; chondrocytes were isolated and expanded. The cells were seeded in 13 by 5 by 2.25-mm UV photopolymerized 1% HA (w/w) or calcium alginate encapsulated synthetic PGA (13 × 5 × 2 mm); the constructs were then incubated in vitro for 12 weeks (the optimal time period determined above in paragraph 1) on a shaker. One HA and one PGA construct from each animal was tested mechanically and histologically, and the remaining eight (4 HA and 4 PGA) were implanted in the neck. After 12 weeks in vivo, the most optimal-appearing HA construct was used as a graft for LTR in 15 rabbits and PGA in one rabbit. The seven remaining specimens underwent hematoxylin and eosin, Safranin O, GAG content determination, and flexural modulus testing. At 12 weeks postoperative, the animals were euthanized and underwent endoscopy. The larynges underwent mechanical and histological testing. All animals that died underwent postmortem examination, including gross and microhistological analysis of the reconstructed airway.

RESULTS

Thirteen of the 15 rabbits that underwent LTR with HA in vitro- and in vivo-derived tissue-engineered cartilage constructs survived. The 1% HA specimens had the highest modulus and GAG after 12 weeks in vitro. The HA constructs became well integrated in the airway, supported respiration for the 12 weeks, and were histologically and mechanically similar to autologous cartilage.

CONCLUSIONS

The engineering of in vitro- and in vivo-derived cartilage with HA is a novel approach for laryngotracheal reconstruction. The data suggests that the in vitro- and in vivo-derived tissue-engineered approaches may offer a promising alternative to current strategies used in pediatric airway reconstruction, as well as other head and neck applications.

LEVEL OF EVIDENCE

NA. Laryngoscope, 126:S5-S21, 2016.

摘要

目的/假设:建立一种用于喉气管重建(LTR)的体外和体内来源的组织工程软骨的有效兔模型。

研究设计

1)通过对4×4毫米的体外构建体进行初步研究,确定最佳支架(1%透明质酸(HA)、2%HA和聚乙醇酸(PGA))以及体外培养时间进程,构建体在静态培养或零重力生物反应器中培养4、8和12周,以压缩模量和组织学作为结果指标。2)进行三阶段存活兔实验,将自体耳软骨细胞接种到1%HA或PGA支架中。构建体在体外培养确定的时间段,然后在体内培养12周。使用HA软骨构建体进行15次LTR,使用PGA构建体进行1次LTR。所有剩余标本和最终重建的喉部进行力学测试、组织学检查和糖胺聚糖(GAG)含量测定,然后与环状软骨对照标本(n = 13)和使用自体甲状腺软骨的对照LTR(n = 18)进行比较。

方法

1)一只兔进行耳冲孔活检,分离并扩增其软骨细胞,然后将其分别封装在1%HA、2%HA、PGA的8个4×4毫米圆盘中,在旋转生物反应器或静态培养中分别培养4、8和12周,测定压缩模量、GAG含量和组织学。2)16只兔进行耳冲孔活检;分离并扩增软骨细胞。将细胞接种到13×5×2.25毫米的紫外线光聚合1%HA(w/w)或海藻酸钙包封的合成PGA(13×5×2毫米)中;然后构建体在振荡器上体外培养12周(上述第1段确定的最佳时间段)。对每只动物的一个HA和一个PGA构建体进行力学和组织学测试,其余八个(4个HA和4个PGA)植入颈部。在体内12周后,将外观最理想的HA构建体用于15只兔的LTR移植,1只兔使用PGA构建体。对其余七个标本进行苏木精和伊红染色、番红O染色、GAG含量测定和弯曲模量测试。术后12周,对动物实施安乐死并进行内镜检查。对喉部进行力学和组织学测试。所有死亡动物进行尸检,包括对重建气道的大体和微观组织学分析。

结果

15只接受体外和体内来源的HA组织工程软骨构建体进行LTR的兔中有13只存活。1%HA标本在体外培养12周后具有最高的模量和GAG。HA构建体在气道中良好整合,在12周内支持呼吸,并且在组织学和力学上与自体软骨相似。

结论

用HA进行体外和体内来源软骨的工程化是喉气管重建的一种新方法。数据表明,体外和体内来源的组织工程方法可能为儿科气道重建以及其他头颈应用中使用的当前策略提供一种有前景的替代方法。

证据水平

无。《喉镜》,2016年,126:S5 - S21。

相似文献

1
Pediatric laryngotracheal reconstruction with tissue-engineered cartilage in a rabbit model.
Laryngoscope. 2016 Jan;126 Suppl 1(Suppl 1):S5-21. doi: 10.1002/lary.25676. Epub 2015 Oct 15.
2
Tracheal reconstruction using tissue-engineered cartilage.
Arch Otolaryngol Head Neck Surg. 2004 Oct;130(10):1191-6. doi: 10.1001/archotol.130.10.1191.
5
Osteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model.
Ann Anat. 2014 Sep;196(5):317-26. doi: 10.1016/j.aanat.2014.03.002. Epub 2014 Apr 2.
7
Successful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model.
Tissue Eng Part A. 2014 Jan;20(1-2):303-12. doi: 10.1089/ten.TEA.2013.0150. Epub 2013 Oct 4.
10
The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds.
Osteoarthritis Cartilage. 2008 Oct;16(10):1237-44. doi: 10.1016/j.joca.2008.02.014. Epub 2008 Apr 11.

引用本文的文献

2
A Pilot Study of Decellularized Cartilage for Laryngotracheal Reconstruction in a Neonatal Pig Model.
Laryngoscope. 2024 Feb;134(2):807-814. doi: 10.1002/lary.31017. Epub 2023 Sep 2.
3
A Review of Woven Tracheal Stents: Materials, Structures, and Application.
J Funct Biomater. 2022 Jul 16;13(3):96. doi: 10.3390/jfb13030096.
4
Tissue engineering applications in otolaryngology-The state of translation.
Laryngoscope Investig Otolaryngol. 2020 Jun 19;5(4):630-648. doi: 10.1002/lio2.416. eCollection 2020 Aug.
5
Successful Posterior Canal Wall Reconstruction with Tissue-Engineered Cartilage.
OTO Open. 2019 Feb 20;3(1):2473974X19825628. doi: 10.1177/2473974X19825628. eCollection 2019 Jan-Mar.
6
Mechanical, Cellular, and Proteomic Properties of Laryngotracheal Cartilage.
Cartilage. 2019 Jul;10(3):321-328. doi: 10.1177/1947603517749921. Epub 2018 Jan 11.
7
Heterogeneity of Scaffold Biomaterials in Tissue Engineering.
Materials (Basel). 2016 May 3;9(5):332. doi: 10.3390/ma9050332.

本文引用的文献

1
Time and dose-dependent effects of chondroitinase ABC on growth of engineered cartilage.
Eur Cell Mater. 2014 Apr 23;27:312-20. doi: 10.22203/ecm.v027a22.
2
Investigation of the long-term patency of a transmural heparinized polycaprolactone and poly(D,L-lactic/glycolic acid) scaffold.
J Surg Res. 2014 Apr;187(2):394-402. doi: 10.1016/j.jss.2013.10.049. Epub 2013 Oct 29.
4
Strengthening alginate/polyacrylamide hydrogels using various multivalent cations.
ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10418-22. doi: 10.1021/am403966x. Epub 2013 Oct 18.
5
Outcomes of balloon dilation in pediatric subglottic stenosis.
Ann Otol Rhinol Laryngol. 2012 Jul;121(7):442-8. doi: 10.1177/000348941212100704.
6
Nanoindentation of human meniscal surfaces.
J Biomech. 2012 Aug 31;45(13):2230-5. doi: 10.1016/j.jbiomech.2012.06.017. Epub 2012 Jul 11.
7
Transient exposure to TGF-β3 improves the functional chondrogenesis of MSC-laden hyaluronic acid hydrogels.
J Mech Behav Biomed Mater. 2012 Jul;11:92-101. doi: 10.1016/j.jmbbm.2012.03.006. Epub 2012 Mar 24.
8
An adsorption chromatography assay to probe bulk particle transport through hydrogels.
J Pharm Sci. 2012 Jan;101(1):436-42. doi: 10.1002/jps.22737. Epub 2011 Sep 8.
9
Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid.
Biomaterials. 2011 Dec;32(34):8771-82. doi: 10.1016/j.biomaterials.2011.08.073. Epub 2011 Sep 7.
10
Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs.
Acta Biomater. 2011 Sep;7(9):3312-24. doi: 10.1016/j.actbio.2011.06.012. Epub 2011 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验