Suppr超能文献

从遗传学、结构到功能:探索果蝇的睡眠。

From genetics to structure to function: exploring sleep in Drosophila.

机构信息

Department of Psychiatry, University of Wisconsin, 6001 Research Park Blvd.Madison, WI 53719, USA.

出版信息

Int Rev Neurobiol. 2011;99:213-44. doi: 10.1016/B978-0-12-387003-2.00009-4.

Abstract

Sleep consists of quiescent periods with reduced responsiveness to external stimuli. Despite being maladaptive in that when asleep, animals are less able to respond to dangerous stimuli; sleep behavior is conserved in all animal species studied to date. Thus, sleep must be performing at least one fundamental, conserved function that is necessary, and/or whose benefits outweigh its maladaptive consequences. Currently, there is no consensus on what that function might be. Over the last 10 years, multiple groups have started to characterize the molecular mechanisms and brain structures necessary for normal sleep in Drosophila melanogaster. These researchers are exploiting genetic tools developed in Drosophila over the past century to identify and manipulate gene expression. Forward genetic screens can identify molecular components in complex biological systems and once identified, these genes can be manipulated within specific brain areas to determine which neuronal groups are important to initiate and maintain sleep. Screening for mutations and brain regions necessary for normal sleep has revealed that several genes that affect sleep are involved in synaptic plasticity and have preferential expression in the mushroom bodies (MBs). Moreover, altering MB neuronal activity alters sleep. Previous genetic screens found that the same genes enriched in MB are necessary for learning and memory. Increasing evidence in mammals, including humans, points to a beneficial role for sleep in synaptic plasticity, learning and memory. Thus, results from both flies and mammals suggest a strong link between sleep need and wake plasticity.

摘要

睡眠由对外界刺激反应性降低的静止期组成。尽管睡眠在适应不良方面表现明显,因为动物在睡眠时对危险刺激的反应能力降低;但迄今为止,所有研究过的动物物种都保留了睡眠行为。因此,睡眠必须执行至少一种基本的、保守的功能,这种功能是必要的,和/或其益处超过了适应不良的后果。目前,对于这个功能可能是什么,还没有共识。在过去的 10 年中,多个研究小组已经开始描述在黑腹果蝇中正常睡眠所必需的分子机制和大脑结构。这些研究人员正在利用过去一个世纪在果蝇中开发的遗传工具来识别和操纵基因表达。正向遗传筛选可以在复杂的生物系统中识别分子成分,一旦确定,这些基因可以在特定的大脑区域中进行操作,以确定哪些神经元群体对于启动和维持睡眠很重要。筛选正常睡眠所必需的突变和大脑区域表明,一些影响睡眠的基因参与突触可塑性,并且在蘑菇体(MB)中优先表达。此外,改变 MB 神经元的活动会改变睡眠。以前的遗传筛选发现,在 MB 中富集的相同基因对于学习和记忆是必需的。包括人类在内的哺乳动物的越来越多的证据表明,睡眠对突触可塑性、学习和记忆有有益的作用。因此,来自果蝇和哺乳动物的结果都表明睡眠需求和清醒可塑性之间存在很强的联系。

相似文献

1
From genetics to structure to function: exploring sleep in Drosophila.
Int Rev Neurobiol. 2011;99:213-44. doi: 10.1016/B978-0-12-387003-2.00009-4.
2
Genes and neural circuits for sleep of the fruit fly.
Neurosci Res. 2017 May;118:82-91. doi: 10.1016/j.neures.2017.04.010. Epub 2017 Apr 21.
3
Sleep and synaptic homeostasis: structural evidence in Drosophila.
Science. 2011 Jun 24;332(6037):1576-81. doi: 10.1126/science.1202839.
4
Sleep and wakefulness in Drosophila melanogaster.
Ann N Y Acad Sci. 2008;1129:323-9. doi: 10.1196/annals.1417.017.
5
Circadian Rhythms and Sleep in .
Genetics. 2017 Apr;205(4):1373-1397. doi: 10.1534/genetics.115.185157.
6
Sleep in Drosophila is regulated by adult mushroom bodies.
Nature. 2006 Jun 8;441(7094):757-60. doi: 10.1038/nature04811.
7
Pairing-Dependent Plasticity in a Dissected Fly Brain Is Input-Specific and Requires Synaptic CaMKII Enrichment and Nighttime Sleep.
J Neurosci. 2022 May 25;42(21):4297-4310. doi: 10.1523/JNEUROSCI.0144-22.2022. Epub 2022 Apr 26.
8
Genetic rescue of functional senescence in synaptic and behavioral plasticity.
Sleep. 2014 Sep 1;37(9):1427-37. doi: 10.5665/sleep.3988.
9
A dynamic role for the mushroom bodies in promoting sleep in Drosophila.
Nature. 2006 Jun 8;441(7094):753-6. doi: 10.1038/nature04739.
10
Sleep- and wake-dependent changes in neuronal activity and reactivity demonstrated in fly neurons using in vivo calcium imaging.
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4785-90. doi: 10.1073/pnas.1419603112. Epub 2015 Mar 30.

引用本文的文献

1
Identifying links between cardiovascular disease and insomnia by modeling genes from a pleiotropic locus.
Dis Model Mech. 2025 May 1;18(5). doi: 10.1242/dmm.052139. Epub 2025 May 6.
2
A candidate loss-of-function variant in SGIP1 causes synaptic dysfunction and recessive parkinsonism.
Cell Rep Med. 2024 Oct 15;5(10):101749. doi: 10.1016/j.xcrm.2024.101749. Epub 2024 Sep 26.
3
Octopamine in the mushroom body circuitry for learning and memory.
Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053839.123. Print 2024 May.
5
Can Therapeutic Hypothermia Diminish the Impact of Traumatic Brain Injury in ?
J Exp Neurosci. 2019 Jan 21;13:1179069518824852. doi: 10.1177/1179069518824852. eCollection 2019.
6
Tired and stressed: Examining the need for sleep.
Eur J Neurosci. 2020 Jan;51(1):494-508. doi: 10.1111/ejn.14197. Epub 2018 Oct 26.
7
Hierarchical Control of Drosophila Sleep, Courtship, and Feeding Behaviors by Male-Specific P1 Neurons.
Neurosci Bull. 2018 Dec;34(6):1105-1110. doi: 10.1007/s12264-018-0281-z. Epub 2018 Sep 4.
8
Parallel clinal variation in the mid-day siesta of Drosophila melanogaster implicates continent-specific targets of natural selection.
PLoS Genet. 2018 Sep 4;14(9):e1007612. doi: 10.1371/journal.pgen.1007612. eCollection 2018 Sep.
9
Neural Control of Startle-Induced Locomotion by the Mushroom Bodies and Associated Neurons in .
Front Syst Neurosci. 2018 Mar 28;12:6. doi: 10.3389/fnsys.2018.00006. eCollection 2018.

本文引用的文献

1
Sleep and waking modulate spine turnover in the adolescent mouse cortex.
Nat Neurosci. 2011 Oct 9;14(11):1418-20. doi: 10.1038/nn.2934.
2
Setting the clock--by nature: circadian rhythm in the fruitfly Drosophila melanogaster.
FEBS Lett. 2011 May 20;585(10):1435-42. doi: 10.1016/j.febslet.2011.02.028. Epub 2011 Feb 25.
3
Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?
Proc Biol Sci. 2011 Aug 22;278(1717):2419-28. doi: 10.1098/rspb.2010.2316. Epub 2011 Jan 5.
4
Sleep state switching.
Neuron. 2010 Dec 22;68(6):1023-42. doi: 10.1016/j.neuron.2010.11.032.
5
Effects of sleep deprivation on cognition.
Prog Brain Res. 2010;185:105-29. doi: 10.1016/B978-0-444-53702-7.00007-5.
6
Hippocampal memory consolidation during sleep: a comparison of mammals and birds.
Biol Rev Camb Philos Soc. 2011 Aug;86(3):658-91. doi: 10.1111/j.1469-185X.2010.00165.x. Epub 2010 Nov 11.
7
Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons.
Neuron. 2010 Oct 6;68(1):87-98. doi: 10.1016/j.neuron.2010.09.006.
10
Dopamine reveals neural circuit mechanisms of fly memory.
Trends Neurosci. 2010 Oct;33(10):457-64. doi: 10.1016/j.tins.2010.07.001. Epub 2010 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验