Suppr超能文献

计算方法在结构生物学中用于选择和优化靶标。

Computational approaches to selecting and optimising targets for structural biology.

机构信息

MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom.

出版信息

Methods. 2011 Sep;55(1):3-11. doi: 10.1016/j.ymeth.2011.08.014. Epub 2011 Aug 27.

Abstract

Selection of protein targets for study is central to structural biology and may be influenced by numerous factors. A key aim is to maximise returns for effort invested by identifying proteins with the balance of biophysical properties that are conducive to success at all stages (e.g. solubility, crystallisation) in the route towards a high resolution structural model. Selected targets can be optimised through construct design (e.g. to minimise protein disorder), switching to a homologous protein, and selection of experimental methodology (e.g. choice of expression system) to prime for efficient progress through the structural proteomics pipeline. Here we discuss computational techniques in target selection and optimisation, with more detailed focus on tools developed within the Scottish Structural Proteomics Facility (SSPF); namely XANNpred, ParCrys, OB-Score (target selection) and TarO (target optimisation). TarO runs a large number of algorithms, searching for homologues and annotating the pool of possible alternative targets. This pool of putative homologues is presented in a ranked, tabulated format and results are also visualised as an automatically generated and annotated multiple sequence alignment. The target selection algorithms each predict the propensity of a selected protein target to progress through the experimental stages leading to diffracting crystals. This single predictor approach has advantages for target selection, when compared with an approach using two or more predictors that each predict for success at a single experimental stage. The tools described here helped SSPF achieve a high (21%) success rate in progressing cloned targets to diffraction-quality crystals.

摘要

蛋白质靶标的选择是结构生物学的核心,可能受到许多因素的影响。一个关键目标是通过识别具有有利于在各个阶段取得成功的物理化学性质平衡的蛋白质,最大程度地提高投资回报率,从而获得高分辨率结构模型。通过构建设计(例如,最小化蛋白质无序性)、切换到同源蛋白以及选择实验方法(例如,表达系统的选择),可以优化选定的靶标,以促进结构蛋白质组学管道的高效进展。在这里,我们讨论了靶标选择和优化中的计算技术,更详细地讨论了苏格兰结构蛋白质组学设施(SSPF)中开发的工具;即 XANNpred、ParCrys、OB-Score(靶标选择)和 TarO(靶标优化)。TarO 运行大量算法,搜索同源物并注释可能的替代靶标池。该假定同源物池以排名、表格格式呈现,结果也以自动生成和注释的多重序列比对的形式可视化。靶标选择算法预测选定的蛋白质靶标在导致衍射晶体的实验阶段的进展倾向。与使用两个或更多预测器的方法相比,这种单一预测器方法在靶标选择方面具有优势,每个预测器都预测单个实验阶段的成功。这里描述的工具帮助 SSPF 将克隆靶标成功推进到衍射质量晶体的成功率提高到 21%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/581c/3202631/81a0a485193c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验