Suppr超能文献

软凝胶的黏弹性:剪切波区磁共振弹性成像和动态剪切测试的比较。

Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.

机构信息

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St Louis, MO 63130, USA.

出版信息

Phys Med Biol. 2011 Oct 7;56(19):6379-400. doi: 10.1088/0031-9155/56/19/014. Epub 2011 Sep 9.

Abstract

Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G″ (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.

摘要

磁共振弹性成像(MRE)用于量化人体和动物组织的粘弹性剪切模量 G*。以前,通过 MRE 确定的 G值已与在较低频率下进行的机械测试值进行了比较。在这项研究中,使用一种新的动态剪切测试(DST)在较高频率下测量组织模拟材料的 G,以便直接与 MRE 进行比较。使用包括惯性效应的封闭形式解,从在 20 至 200 Hz 之间获得的 DST 数据中提取 G值。使用相同材料的圆柱形“幻影”在重叠频率范围为 100-400 Hz 的范围内进行 MRE。中心杆的轴向振动在幻影中引起径向传播的剪切波。使用全最小二乘法拟合粘弹性形式的纳维方程来拟合位移场,以获得 G的局部估计值。组织模拟材料的 DST 估计的存储 G'(Re[G*])和损耗模量 G″(Im[G*])随频率从 0.86 增加到 0.97 kPa(20-200 Hz,n = 16),而 MRE 估计的 G'随频率从 1.06 增加到 1.15 kPa(100-400 Hz,n = 6)。损耗因子(Im[G*]/Re[G*])也随两种测试方法的频率增加而增加:0.06-0.14(20-200 Hz,DST)和 0.11-0.23(100-400 Hz,MRE)。在重叠频率下,MRE 和 DST 结果之间的密切一致性表明,在较宽的频率范围内,可以通过 MRE 对 G*进行局部估计。低信噪比、长剪切波长和边界效应被发现会增加残余拟合误差,这加强了使用误差度量来评估通过 MRE 获得的局部参数估计的置信度。

相似文献

1
Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.
Phys Med Biol. 2011 Oct 7;56(19):6379-400. doi: 10.1088/0031-9155/56/19/014. Epub 2011 Sep 9.
3
Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis.
Magn Reson Med. 2017 Mar;77(3):1184-1192. doi: 10.1002/mrm.26207. Epub 2016 Mar 26.
4
Viscoelastic properties of human cerebellum using magnetic resonance elastography.
J Biomech. 2011 Jul 7;44(10):1909-13. doi: 10.1016/j.jbiomech.2011.04.034. Epub 2011 May 11.
5
Mechanical analysis of an axially symmetric cylindrical phantom with a spherical heterogeneity for MR elastography.
Phys Med Biol. 2016 Sep 21;61(18):6821-6832. doi: 10.1088/0031-9155/61/18/6821. Epub 2016 Aug 31.
6
Wide-range dynamic magnetic resonance elastography.
J Biomech. 2011 Apr 29;44(7):1380-6. doi: 10.1016/j.jbiomech.2010.12.031. Epub 2011 Feb 3.
7
Harmonic wideband simultaneous dual-frequency MR Elastography.
NMR Biomed. 2021 Feb;34(2):e4442. doi: 10.1002/nbm.4442. Epub 2020 Nov 11.
8
10
Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography.
Phys Med Biol. 2011 Apr 21;56(8):2391-406. doi: 10.1088/0031-9155/56/8/005. Epub 2011 Mar 22.

引用本文的文献

1
Birth mode is associated with layer-specific mechanical changes in fetal membranes.
Sci Rep. 2025 Jun 20;15(1):20132. doi: 10.1038/s41598-025-04752-4.
2
3D rotational shear wave elasticity imaging (3D-RSWEI) in anisotropic lattice phantoms.
J Mech Behav Biomed Mater. 2025 Oct;170:107048. doi: 10.1016/j.jmbbm.2025.107048. Epub 2025 May 26.
3
Mechanically anisotropic phantoms for magnetic resonance elastography.
Magn Reson Med. 2025 May;93(5):2123-2139. doi: 10.1002/mrm.30394. Epub 2024 Dec 3.
4
Post-mortem changes of anisotropic mechanical properties in the porcine brain assessed by MR elastography.
Brain Multiphys. 2024 Jun;6. doi: 10.1016/j.brain.2024.100091. Epub 2024 Feb 6.
5
Viscoelastic polyacrylamide MR elastography phantoms with tunable damping ratio independent of shear stiffness.
J Mech Behav Biomed Mater. 2024 Jun;154:106522. doi: 10.1016/j.jmbbm.2024.106522. Epub 2024 Mar 22.
6
Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig.
Neuroimage. 2023 Aug 15;277:120234. doi: 10.1016/j.neuroimage.2023.120234. Epub 2023 Jun 25.
7
Design and characterization of 3-D printed hydrogel lattices with anisotropic mechanical properties.
J Mech Behav Biomed Mater. 2023 Feb;138:105652. doi: 10.1016/j.jmbbm.2023.105652. Epub 2023 Jan 2.
8
OSCILLATE: A low-rank approach for accelerated magnetic resonance elastography.
Magn Reson Med. 2022 Oct;88(4):1659-1672. doi: 10.1002/mrm.29308. Epub 2022 Jun 1.
10
MR elastography: Principles, guidelines, and terminology.
Magn Reson Med. 2021 May;85(5):2377-2390. doi: 10.1002/mrm.28627. Epub 2020 Dec 9.

本文引用的文献

1
Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography.
Phys Med Biol. 2011 Apr 21;56(8):2391-406. doi: 10.1088/0031-9155/56/8/005. Epub 2011 Mar 22.
2
Wide-range dynamic magnetic resonance elastography.
J Biomech. 2011 Apr 29;44(7):1380-6. doi: 10.1016/j.jbiomech.2010.12.031. Epub 2011 Feb 3.
3
Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions.
Phys Med Biol. 2010 Nov 21;55(22):6801-15. doi: 10.1088/0031-9155/55/22/013. Epub 2010 Oct 28.
4
Viscoelasticity-based MR elastography of skeletal muscle.
Phys Med Biol. 2010 Nov 7;55(21):6445-59. doi: 10.1088/0031-9155/55/21/007. Epub 2010 Oct 15.
5
In vivo viscoelastic properties of the brain in normal pressure hydrocephalus.
NMR Biomed. 2011 May;24(4):385-92. doi: 10.1002/nbm.1602. Epub 2010 Oct 7.
8
Time-harmonic magnetic resonance elastography of the normal feline brain.
J Biomech. 2010 Oct 19;43(14):2747-52. doi: 10.1016/j.jbiomech.2010.06.008. Epub 2010 Jul 23.
9
Shear wave induced resonance elastography of soft heterogeneous media.
J Biomech. 2010 May 28;43(8):1488-93. doi: 10.1016/j.jbiomech.2010.01.045. Epub 2010 Feb 19.
10
Ultrasound-based transient elastography compared to magnetic resonance elastography in soft tissue-mimicking gels.
Phys Med Biol. 2009 Nov 21;54(22):6979-90. doi: 10.1088/0031-9155/54/22/015. Epub 2009 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验