Suppr超能文献

一种迭代遗传和动力学建模方法确定了黑素细胞发育相关基因调控网络的新特征。

An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development.

机构信息

Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom.

出版信息

PLoS Genet. 2011 Sep;7(9):e1002265. doi: 10.1371/journal.pgen.1002265. Epub 2011 Sep 1.

Abstract

The mechanisms generating stably differentiated cell-types from multipotent precursors are key to understanding normal development and have implications for treatment of cancer and the therapeutic use of stem cells. Pigment cells are a major derivative of neural crest stem cells and a key model cell-type for our understanding of the genetics of cell differentiation. Several factors driving melanocyte fate specification have been identified, including the transcription factor and master regulator of melanocyte development, Mitf, and Wnt signalling and the multipotency and fate specification factor, Sox10, which drive mitf expression. While these factors together drive multipotent neural crest cells to become specified melanoblasts, the mechanisms stabilising melanocyte differentiation remain unclear. Furthermore, there is controversy over whether Sox10 has an ongoing role in melanocyte differentiation. Here we use zebrafish to explore in vivo the gene regulatory network (GRN) underlying melanocyte specification and differentiation. We use an iterative process of mathematical modelling and experimental observation to explore methodically the core melanocyte GRN we have defined. We show that Sox10 is not required for ongoing differentiation and expression is downregulated in differentiating cells, in response to Mitfa and Hdac1. Unexpectedly, we find that Sox10 represses Mitf-dependent expression of melanocyte differentiation genes. Our systems biology approach allowed us to predict two novel features of the melanocyte GRN, which we then validate experimentally. Specifically, we show that maintenance of mitfa expression is Mitfa-dependent, and identify Sox9b as providing an Mitfa-independent input to melanocyte differentiation. Our data supports our previous suggestion that Sox10 only functions transiently in regulation of mitfa and cannot be responsible for long-term maintenance of mitfa expression; indeed, Sox10 is likely to slow melanocyte differentiation in the zebrafish embryo. More generally, this novel approach to understanding melanocyte differentiation provides a basis for systematic modelling of differentiation in this and other cell-types.

摘要

从多能前体细胞中产生稳定分化细胞类型的机制是理解正常发育的关键,并且对癌症的治疗和干细胞的治疗应用具有重要意义。色素细胞是神经嵴干细胞的主要衍生物,也是我们理解细胞分化遗传学的关键模型细胞类型。已经确定了几个驱动黑素细胞命运特化的因素,包括转录因子和黑素细胞发育的主要调节剂 Mitf,以及 Wnt 信号和多能性和命运特化因子 Sox10,它们驱动 mitf 表达。虽然这些因素共同驱动多能神经嵴细胞成为特化的黑素细胞前体细胞,但稳定黑素细胞分化的机制仍不清楚。此外,关于 Sox10 是否在黑素细胞分化中具有持续作用存在争议。在这里,我们使用斑马鱼来探索黑素细胞特化和分化背后的基因调控网络(GRN)。我们使用数学建模和实验观察的迭代过程,系统地探索我们已经定义的核心黑素细胞 GRN。我们表明 Sox10 不需要持续分化,并且在分化细胞中表达下调,响应于 Mitfa 和 Hdac1。出乎意料的是,我们发现 Sox10 抑制 Sox10 依赖的黑素细胞分化基因的表达。我们的系统生物学方法使我们能够预测黑素细胞 GRN 的两个新特征,然后我们通过实验验证了这些特征。具体来说,我们表明 mitfa 表达的维持是依赖于 Mitfa 的,并且鉴定 Sox9b 作为向黑素细胞分化提供 Mitfa 独立输入的因子。我们的数据支持我们之前的建议,即 Sox10 仅在调节 mitfa 中起短暂作用,并且不能负责 mitfa 表达的长期维持;事实上,Sox10 可能会在斑马鱼胚胎中减缓黑素细胞的分化。更一般地说,这种理解黑素细胞分化的新方法为在这个和其他细胞类型中进行分化的系统建模提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/856f/3164703/2aba84553b10/pgen.1002265.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验