Suppr超能文献

区域数据细化局部预测:在中部平原的一部分模拟植物物种丰富度的分布。

Regional data refine local predictions: modeling the distribution of plant species abundance on a portion of the central plains.

机构信息

Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA.

出版信息

Environ Monit Assess. 2012 Sep;184(9):5439-51. doi: 10.1007/s10661-011-2351-9. Epub 2011 Sep 13.

Abstract

Species distribution models are frequently used to predict species occurrences in novel conditions, yet few studies have examined the consequences of extrapolating locally collected data to regional landscapes. Similarly, the process of using regional data to inform local prediction for species distribution models has not been adequately evaluated. Using boosted regression trees, we examined errors associated with extrapolating models developed with locally collected abundance data to regional-scale spatial extents and associated with using regional data for predictions at a local extent for a native and non-native plant species across the northeastern central plains of Colorado. Our objectives were to compare model results and accuracy between those developed locally and extrapolated regionally, those developed regionally and extrapolated locally, and to evaluate extending species distribution modeling from predicting the probability of presence to predicting abundance. We developed models to predict the spatial distribution of plant species abundance using topographic, remotely sensed, land cover and soil taxonomic predictor variables. We compared model predicted mean and range abundance values to observed values between local and regional. We also evaluated model prediction performance based on Pearson's correlation coefficient. We show that: (1) extrapolating local models to regional extents may restrict predictions, (2) regional data can help refine and improve local predictions, and (3) boosted regression trees can be useful to model and predict plant species abundance. Regional sampling designed in concert with large sampling frameworks such as the National Ecological Observatory Network may improve our ability to monitor changes in local species abundance.

摘要

物种分布模型常用于预测新环境下的物种出现情况,但很少有研究探讨将局部采集的数据外推到区域景观的后果。同样,利用区域数据为物种分布模型进行局部预测的过程也没有得到充分评估。本研究使用增强回归树,检验了将基于局部采集的丰度数据开发的模型外推到区域尺度的空间范围以及利用区域数据进行局部预测的相关误差,研究对象为科罗拉多州东北部中心平原的本地和非本地植物物种。我们的目标是比较局部和区域外推模型、区域和局部开发模型的结果和准确性,并评估从预测存在概率扩展到预测丰度的物种分布模型。我们使用地形、遥感、土地覆盖和土壤分类学预测变量来开发预测植物物种丰度空间分布的模型。我们比较了局部和区域模型预测的平均和范围丰度值与观测值。我们还根据皮尔逊相关系数评估了模型预测性能。研究结果表明:(1)将局部模型外推到区域范围可能会限制预测;(2)区域数据有助于改进和提高局部预测;(3)增强回归树可用于对植物物种丰度进行建模和预测。与国家生态观测网络等大型采样框架相协调的区域采样可能会提高我们监测局部物种丰度变化的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验