Suppr超能文献

超越以气候为中心的植物分布观点:土壤变量为分布模型增添价值。

Beyond a climate-centric view of plant distribution: edaphic variables add value to distribution models.

作者信息

Beauregard Frieda, de Blois Sylvie

机构信息

Department of Plant Science, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada.

Department of Plant Science and McGill School of Environment, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada.

出版信息

PLoS One. 2014 Mar 21;9(3):e92642. doi: 10.1371/journal.pone.0092642. eCollection 2014.

Abstract

Both climatic and edaphic conditions determine plant distribution, however many species distribution models do not include edaphic variables especially over large geographical extent. Using an exceptional database of vegetation plots (n = 4839) covering an extent of ∼55,000 km2, we tested whether the inclusion of fine scale edaphic variables would improve model predictions of plant distribution compared to models using only climate predictors. We also tested how well these edaphic variables could predict distribution on their own, to evaluate the assumption that at large extents, distribution is governed largely by climate. We also hypothesized that the relative contribution of edaphic and climatic data would vary among species depending on their growth forms and biogeographical attributes within the study area. We modelled 128 native plant species from diverse taxa using four statistical model types and three sets of abiotic predictors: climate, edaphic, and edaphic-climate. Model predictive accuracy and variable importance were compared among these models and for species' characteristics describing growth form, range boundaries within the study area, and prevalence. For many species both the climate-only and edaphic-only models performed well, however the edaphic-climate models generally performed best. The three sets of predictors differed in the spatial information provided about habitat suitability, with climate models able to distinguish range edges, but edaphic models able to better distinguish within-range variation. Model predictive accuracy was generally lower for species without a range boundary within the study area and for common species, but these effects were buffered by including both edaphic and climatic predictors. The relative importance of edaphic and climatic variables varied with growth forms, with trees being more related to climate whereas lower growth forms were more related to edaphic conditions. Our study identifies the potential for non-climate aspects of the environment to pose a constraint to range expansion under climate change.

摘要

气候和土壤条件都决定着植物的分布,然而许多物种分布模型并未纳入土壤变量,尤其是在大地理尺度上。我们利用一个特殊的植被样地数据库(n = 4839),其覆盖面积约为55000平方公里,测试了与仅使用气候预测因子的模型相比,纳入精细尺度的土壤变量是否能改善植物分布的模型预测。我们还测试了这些土壤变量自身对分布的预测能力,以评估在大尺度上分布主要受气候控制这一假设。我们还假设,土壤和气候数据的相对贡献会因物种的生长形式及其在研究区域内的生物地理属性而异。我们使用四种统计模型类型和三组非生物预测因子(气候、土壤和气候 - 土壤)对128种来自不同分类群的本地植物物种进行了建模。比较了这些模型之间的模型预测准确性和变量重要性,以及描述生长形式、研究区域内的分布边界和普遍程度的物种特征。对于许多物种而言,仅气候模型和仅土壤模型都表现良好,但气候 - 土壤模型通常表现最佳。三组预测因子在提供的关于栖息地适宜性的空间信息方面存在差异,气候模型能够区分分布范围边缘,但土壤模型能够更好地区分范围内的变化。对于在研究区域内没有分布边界的物种和常见物种,模型预测准确性通常较低,但通过同时纳入土壤和气候预测因子,这些影响得到了缓冲。土壤和气候变量的相对重要性因生长形式而异,树木与气候的相关性更强,而较低生长形式与土壤条件的相关性更强。我们的研究确定了环境的非气候方面在气候变化下对分布范围扩张构成限制的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c4e/3962442/9bd63e9486ed/pone.0092642.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验