Suppr超能文献

病死率风险评分和 ADG 评分:约翰霍普金斯综合诊断组的两个基于两点的评分系统,用于预测加拿大安大略省一般成年人群队列中的病死率。

The mortality risk score and the ADG score: two points-based scoring systems for the Johns Hopkins aggregated diagnosis groups to predict mortality in a general adult population cohort in Ontario, Canada.

机构信息

Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.

出版信息

Med Care. 2011 Oct;49(10):940-7. doi: 10.1097/MLR.0b013e318229360e.

Abstract

BACKGROUND

Logistic regression models that incorporated age, sex, and indicator variables for the Johns Hopkins' Aggregated Diagnosis Groups (ADGs) categories have been shown to accurately predict all-cause mortality in adults.

OBJECTIVES

To develop 2 different point-scoring systems using the ADGs. The Mortality Risk Score (MRS) collapses age, sex, and the ADGs to a single summary score that predicts the annual risk of all-cause death in adults. The ADG Score derives weights for the individual ADG diagnosis groups.

RESEARCH DESIGN

: Retrospective cohort constructed using population-based administrative data.

PARTICIPANTS

All 10,498,413 residents of Ontario, Canada, between the age of 20 and 100 years who were alive on their birthday in 2007, participated in this study. Participants were randomly divided into derivation and validation samples.

MEASURES

: Death within 1 year.

RESULTS

In the derivation cohort, the MRS ranged from -21 to 139 (median value 29, IQR 17 to 44). In the validation group, a logistic regression model with the MRS as the sole predictor significantly predicted the risk of 1-year mortality with a c-statistic of 0.917. A regression model with age, sex, and the ADG Score has similar performance. Both methods accurately predicted the risk of 1-year mortality across the 20 vigintiles of risk.

CONCLUSIONS

The MRS combined values for a person's age, sex, and the John Hopkins ADGs to accurately predict 1-year mortality in adults. The ADG Score is a weighted score representing the presence or absence of the 32 ADG diagnosis groups. These scores will facilitate health services researchers conducting risk adjustment using administrative health care databases.

摘要

背景

已证实,纳入约翰霍普金斯综合诊断组(ADG)类别年龄、性别和指示变量的逻辑回归模型能够准确预测成年人的全因死亡率。

目的

使用 ADG 开发 2 种不同的评分系统。死亡率风险评分(MRS)将年龄、性别和 ADG 合并为一个单一的综合评分,预测成年人全因死亡的年风险。ADG 评分则为各个 ADG 诊断组赋予权重。

研究设计

利用基于人群的行政数据构建回顾性队列。

参与者

2007 年生日时年龄在 20 至 100 岁之间、居住在加拿大安大略省的 10498413 名居民参加了本研究。参与者被随机分为推导和验证样本。

测量指标

1 年内死亡。

结果

在推导队列中,MRS 范围为-21 至 139(中位数 29,IQR 17 至 44)。在验证组中,以 MRS 为唯一预测因子的逻辑回归模型显著预测了 1 年死亡率风险,C 统计量为 0.917。包含年龄、性别和 ADG 评分的回归模型表现相似。两种方法都能准确预测 20 个风险百分位数中 1 年死亡率的风险。

结论

MRS 综合了个体的年龄、性别和约翰霍普金斯 ADG 值,能够准确预测成年人的 1 年死亡率。ADG 评分是一个加权评分,代表 32 个 ADG 诊断组的存在或缺失。这些评分将有助于使用医疗保健管理数据库进行风险调整的卫生服务研究人员。

相似文献

引用本文的文献

本文引用的文献

6
Comorbidity measures for use with administrative data.用于行政数据的共病测量方法。
Med Care. 1998 Jan;36(1):8-27. doi: 10.1097/00005650-199801000-00004.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验