Department of Management and Marketing, Jacksonville State University, Jacksonville, AL 36265, United States.
Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, United States.
J Am Med Inform Assoc. 2024 Aug 1;31(8):1763-1773. doi: 10.1093/jamia/ocae140.
Develop a novel technique to identify an optimal number of regression units corresponding to a single risk point, while creating risk scoring systems from logistic regression-based disease predictive models. The optimal value of this hyperparameter balances simplicity and accuracy, yielding risk scores of small scale and high accuracy for patient risk stratification.
The proposed technique applies an adapted line search across all potential hyperparameter values. Additionally, DeLong test is integrated to ensure the selected value produces an accuracy insignificantly different from the best achievable risk score accuracy. We assessed the approach through two case studies predicting diabetic retinopathy (DR) within six months and hip fracture readmissions (HFR) within 30 days, involving cohorts of 90 400 diabetic patients and 18 065 hip fracture patients.
Our scores achieve accuracies insignificantly different from those obtained by existing approaches, reaching AUROCs of 0.803 and 0.645 for DR and HFR predictions, respectively. Regarding the scale, our scores ranged 0-53 for DR and 0-15 for HFR, while scores produced by existing methods frequently spanned hundreds or thousands.
According to the assessment, our risk scores offer simple and accurate predictions for diseases. Furthermore, our new DR score provides a competitive alternative to state-of-the-art risk scores for DR, while our HFR case study presents the first risk score for this condition.
Our technique offers a generalizable framework for crafting precise risk scores of compact scales, addressing the demand for user-friendly and effective risk stratification tool in healthcare.
开发一种新的技术,以确定对应单个风险点的最佳回归单元数量,同时从基于逻辑回归的疾病预测模型中创建风险评分系统。这个超参数的最佳值平衡了简单性和准确性,为患者风险分层生成了规模小而准确性高的风险评分。
所提出的技术应用自适应线性搜索所有潜在的超参数值。此外,还集成了 DeLong 检验以确保所选值产生的准确性与可实现的最佳风险评分准确性无显著差异。我们通过两项案例研究评估了该方法,分别在六个月内预测糖尿病视网膜病变 (DR) 和 30 天内预测髋部骨折再入院 (HFR),涉及 90400 名糖尿病患者和 18065 名髋部骨折患者的队列。
我们的评分与现有方法获得的评分精度无显著差异,对 DR 和 HFR 的预测分别达到了 0.803 和 0.645 的 AUC。关于规模,我们的评分范围为 DR 的 0-53 和 HFR 的 0-15,而现有方法产生的评分通常跨越数百或数千。
根据评估,我们的风险评分提供了简单而准确的疾病预测。此外,我们的新 DR 评分提供了一种与 DR 先进风险评分竞争的替代方案,而我们的 HFR 案例研究则首次为该疾病提供了风险评分。
我们的技术提供了一种通用的框架来制作精确的规模紧凑的风险评分,满足了医疗保健中用户友好和有效的风险分层工具的需求。