Asomugha C O, Gupta R, Srivastava O P
Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-4390, USA.
Mol Vis. 2011;17:2356-67. Epub 2011 Aug 31.
The purpose of the present study was to determine the biophysical and chaperone properties of the NH(2)-terminal domain, core domain and COOH-terminal extension of human αA- and αB-crystallins and correlate these properties to those of wild type (WT) αA- and αB-crystallins.
WT αA- and αB-crystallins cloned into pET 100D TOPO vector, were used as templates to generate different constructs encoding specific regions (NH(2)-terminal domain [NTD], core domain [CD], and COOH-terminal extension, [CTE]). The specific regions amplified by PCR using plasmid DNA from WT αA and WT αB were: αA NTD (residues 1-63), αA CD (residues 64-142), αA CTE (residues 143-173), αB NTD (residues 1-66), αB CD (residues 67-146), and αB CTE (residues 147-175). Resultant blunt-end PCR products were ligated to a pET 100 Directional TOPO vector. DNA sequencing results confirmed the desired constructs. Positive clones were transformed into the BL21 Star (DE3) expression cell line. Protein expression and solubility were confirmed by SDS-PAGE and western blot analysis using a monoclonal antibody against a 6× His-tag epitope. Proteins were purified using Ni(2+)-affinity column chromatography, under native or denaturing conditions, and used for biophysical and chaperone function analyses.
A total of five constructs were successfully generated: αA NTD, αA CD, αB NTD, αB CD, and αB CTE. SDS-PAGE and western blot analyses showed that αA CD and αB CD were present in both the soluble and insoluble fractions, whereas mutant preparations with NTD alone became insoluble and the mutant with CTE alone became soluble. All purified constructs showed alterations in biophysical properties and chaperone function compared to WT α-crystallins. αA NTD and αB CTE exhibited the most notable changes in secondary structural content. Also, αA NTD and all αB-crystallin constructs showed altered surface hydrophobicity compared to their respective WT α-crystallins.
Although the individual α-crystallin regions (i.e., NH(2)-terminal domain, core domain, and COOH-terminal extension) exhibited varied biophysical properties, each region alone retained some level of chaperone function. The NH(2)-terminal domains of αA and αB each showed the maximum chaperone activity of the three regions with respect to their WT crystallins.
本研究旨在确定人αA-和αB-晶状体蛋白的氨基末端结构域、核心结构域和羧基末端延伸区的生物物理和伴侣蛋白特性,并将这些特性与野生型(WT)αA-和αB-晶状体蛋白的特性进行关联。
克隆到pET 100D TOPO载体中的WT αA-和αB-晶状体蛋白用作模板,以生成编码特定区域(氨基末端结构域[NTD]、核心结构域[CD]和羧基末端延伸区[CTE])的不同构建体。使用来自WT αA和WT αB的质粒DNA通过PCR扩增的特定区域为:αA NTD(第1至63位氨基酸残基)、αA CD(第64至142位氨基酸残基)、αA CTE(第143至173位氨基酸残基)、αB NTD(第1至66位氨基酸残基)、αB CD(第67至146位氨基酸残基)和αB CTE(第147至175位氨基酸残基)。将所得的平端PCR产物连接到pET 100定向TOPO载体上。DNA测序结果证实了所需的构建体。将阳性克隆转化到BL21 Star(DE3)表达细胞系中。通过SDS-PAGE和使用针对6×His标签表位的单克隆抗体的蛋白质印迹分析来确认蛋白质表达和溶解性。在天然或变性条件下,使用镍(2+)亲和柱色谱法纯化蛋白质,并用于生物物理和伴侣蛋白功能分析。
共成功生成了五个构建体:αA NTD、αA CD、αB NTD、αB CD和αB CTE。SDS-PAGE和蛋白质印迹分析表明,αA CD和αB CD存在于可溶性和不溶性部分中,而仅含NTD的突变体制剂变得不溶,仅含CTE的突变体变得可溶。与WT α-晶状体蛋白相比,所有纯化的构建体在生物物理特性和伴侣蛋白功能方面均表现出改变。αA NTD和αB CTE在二级结构含量上表现出最显著的变化。此外,与各自的WT α-晶状体蛋白相比,αA NTD和所有αB-晶状体蛋白构建体的表面疏水性均发生了改变。
尽管单个α-晶状体蛋白区域(即氨基末端结构域、核心结构域和羧基末端延伸区)表现出不同的生物物理特性,但每个区域单独保留了一定水平的伴侣蛋白功能。相对于其WT晶状体蛋白,αA和αB的氨基末端结构域在三个区域中均显示出最大的伴侣蛋白活性。