McHaourab Hassane S, Godar Jared A, Stewart Phoebe L
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0615, USA.
Biochemistry. 2009 May 12;48(18):3828-37. doi: 10.1021/bi900212j.
Small heat shock proteins (sHSP) make up a remarkably diverse group of molecular chaperones possessing a degree of structural plasticity unparalleled in other protein superfamilies. In the absence of chemical energy input, these stability sensors can sensitively recognize and bind destabilized proteins, even in the absence of gross misfolding. Cellular conditions regulate affinity toward client proteins, allowing tightly controlled switching and tuning of sHSP chaperone capacity. Perturbations of this regulation, through chemical modification or mutation, directly lead to a variety of disease states. This review explores the structural basis of sHSP oligomeric flexibility and the corresponding functional consequences in the context of a model describing sHSP activity with a set of three coupled thermodynamic equilibria. As current research illuminates many novel physiological roles for sHSP outside of their traditional duties as molecular chaperones, such a conceptual framework provides a sound foundation for describing these emerging functions in physiological and pathological processes.
小热休克蛋白(sHSP)构成了一组极为多样的分子伴侣,其具有一定程度的结构可塑性,这在其他蛋白质超家族中是无与伦比的。在没有化学能量输入的情况下,这些稳定性传感器能够灵敏地识别并结合不稳定的蛋白质,即使在没有明显错误折叠的情况下也是如此。细胞条件调节对客户蛋白的亲和力,从而实现对sHSP伴侣能力的严格控制的切换和调节。通过化学修饰或突变对这种调节的干扰会直接导致多种疾病状态。本综述在一个用一组三个耦合热力学平衡描述sHSP活性的模型背景下,探讨了sHSP寡聚体灵活性的结构基础以及相应的功能后果。由于当前的研究揭示了sHSP在其作为分子伴侣的传统职责之外的许多新的生理作用,这样一个概念框架为描述这些在生理和病理过程中新兴的功能提供了坚实的基础。