Suppr超能文献

使用多核架构的高性能3D压缩感知磁共振成像重建

High-Performance 3D Compressive Sensing MRI Reconstruction Using Many-Core Architectures.

作者信息

Kim Daehyun, Trzasko Joshua, Smelyanskiy Mikhail, Haider Clifton, Dubey Pradeep, Manduca Armando

机构信息

Parallel Computing Lab, Intel Corporation, 2200 Mission College Boulevard Santa Clara, CA 95054, USA.

出版信息

Int J Biomed Imaging. 2011;2011:473128. doi: 10.1155/2011/473128. Epub 2011 Sep 14.

Abstract

Compressive sensing (CS) describes how sparse signals can be accurately reconstructed from many fewer samples than required by the Nyquist criterion. Since MRI scan duration is proportional to the number of acquired samples, CS has been gaining significant attention in MRI. However, the computationally intensive nature of CS reconstructions has precluded their use in routine clinical practice. In this work, we investigate how different throughput-oriented architectures can benefit one CS algorithm and what levels of acceleration are feasible on different modern platforms. We demonstrate that a CUDA-based code running on an NVIDIA Tesla C2050 GPU can reconstruct a 256 × 160 × 80 volume from an 8-channel acquisition in 19 seconds, which is in itself a significant improvement over the state of the art. We then show that Intel's Knights Ferry can perform the same 3D MRI reconstruction in only 12 seconds, bringing CS methods even closer to clinical viability.

摘要

压缩感知(CS)描述了如何从比奈奎斯特准则所需样本少得多的样本中准确重建稀疏信号。由于磁共振成像(MRI)扫描持续时间与采集样本数量成正比,压缩感知在MRI中受到了广泛关注。然而,压缩感知重建的计算强度大,这使得它们无法在常规临床实践中使用。在这项工作中,我们研究了不同的面向吞吐量的架构如何使一种压缩感知算法受益,以及在不同的现代平台上可行的加速水平。我们证明,在英伟达特斯拉C2050图形处理器(GPU)上运行的基于统一计算设备架构(CUDA)的代码可以在19秒内从8通道采集中重建出一个256×160×80的体数据,这本身就是相对于现有技术的显著改进。然后我们表明,英特尔的Knights Ferry仅需12秒就能完成相同的三维MRI重建,使压缩感知方法更接近临床可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f10f/3172979/aa246468bc8c/IJBI2011-473128.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验