Suppr超能文献

快速、稳健的基于全变差的含噪、模糊图像重建。

Fast, robust total variation-based reconstruction of noisy, blurred images.

机构信息

Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA.

出版信息

IEEE Trans Image Process. 1998;7(6):813-24. doi: 10.1109/83.679423.

Abstract

Tikhonov regularization with a modified total variation regularization functional is used to recover an image from noisy, blurred data. This approach is appropriate for image processing in that it does not place a priori smoothness conditions on the solution image. An efficient algorithm is presented for the discretized problem that combines a fixed point iteration to handle nonlinearity with a new, effective preconditioned conjugate gradient iteration for large linear systems. Reconstructions, convergence results, and a direct comparison with a fast linear solver are presented for a satellite image reconstruction application.

摘要

使用带修正全变差正则化项的 Tikhonov 正则化方法,从噪声和模糊数据中恢复图像。该方法适用于图像处理,因为它不对解图像施加先验平滑条件。对于离散化问题,我们提出了一种有效的算法,它将处理非线性的不动点迭代与大型线性系统的新的有效预处理共轭梯度迭代相结合。针对卫星图像重建应用,我们给出了重建结果、收敛结果以及与快速线性求解器的直接比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验