Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
Nat Mater. 2011 Oct;10(10):765-71. doi: 10.1038/nmat3118.
Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication.
胶体量子点(CQD)光电技术通过量子尺寸效应提供了溶液处理和光谱可调性的引人注目的组合。到目前为止,CQD 太阳能电池依赖于使用有机配体来钝化半导体纳米粒子的表面。尽管无机金属硫属化物配体导致 CQD 薄膜中创纪录的电子输运参数,但尚未报道基于此类化合物的光伏器件。在这里,我们建立了一种原子配体策略,利用单价卤化物阴离子来增强电子输运并成功钝化 PbS CQD 薄膜中的表面缺陷。时间分辨红外光谱和瞬态器件特性表明,该方案导致的陷阱态分布比最佳有机配体浅。采用这种策略制备的太阳能电池的太阳能 AM1.5G 功率转换效率高达 6%。CQD 薄膜在室温下和环境气氛中沉积,使得该工艺适合于低成本、卷对卷制造。