Kondo Makoto, Izumi Takamichi, Fujieda Nao, Kondo Atsushi, Morishita Takeharu, Matsushita Hirokazu, Kakimi Kazuhiro
Department of Immunotherapeutics (Medinet), University of Tokyo Hospital.
J Vis Exp. 2011 Sep 9(55):3182. doi: 10.3791/3182.
Human γδ T cells can recognize and respond to a wide variety of stress-induced antigens, thereby developing innate broad anti-tumor and anti-infective activity. The majority of γδ T cells in peripheral blood have the Vγ9Vδ2 T cell receptor. These cells recognize antigen in a major histocompatibility complex-independent manner and develop strong cytolytic and Th1-like effector functions. Therefore, γδ T cells are attractive candidate effector cells for cancer immunotherapy. Vγ9Vδ2 T cells respond to phosphoantigens such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is synthesized in bacteria via isoprenoid biosynthesis; and isopentenyl pyrophosphate (IPP), which is produced in eukaryotic cells through the mevalonate pathway. In physiological condition, the generation of IPP in nontransformed cell is not sufficient for the activation of γδ T cells. Dysregulation of mevalonate pathway in tumor cells leads to accumulation of IPP and γδ T cells activation. Because aminobisphosphonates (such as pamidronate or zoledronate) inhibit farnesyl pyrophosphate synthase (FPPS), the enzyme acting downstream of IPP in the mevalonate pathway, intracellular levels of IPP and sensitibity to γδ T cells recognition can be therapeutically increased by aminobisphosphonates. IPP accumulation is less efficient in nontransformed cells than tumor cells with a pharmacologically relevant concentration of aminobisphosphonates, that allow us immunotherapy for cancer by activating γδ T cells with aminobisphosphonates. Interestingly, IPP accumulates in monocytes when PBMC are treated with aminobisphosphonates, because of efficient drug uptake by these cells. Monocytes that accumulate IPP become antigen-presenting cells and stimulate Vγ9Vδ2 T cells in the peripheral blood. Based on these mechanisms, we developed a technique for large-scale expansion of γδ T cell cultures using zoledronate and interleukin-2 (IL-2). Other methods for expansion of γδ T cells utilize the synthetic phosphoantigens bromohydrin pyrophosphate (BrHPP) or 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP). All of these methods allow ex vivo expansion, resulting in large numbers of γδ T cells for use in adoptive immunotherapy. However, only zoledronate is an FDA-approved commercially available reagent. Zoledronate-expanded γδ T cells display CD27(-)CD45RA(-) effector memory phenotype and thier function can be evaluated by IFN-γ production assay.
人类γδ T细胞能够识别并对多种应激诱导抗原作出反应,从而产生先天性广泛的抗肿瘤和抗感染活性。外周血中的大多数γδ T细胞具有Vγ9Vδ2 T细胞受体。这些细胞以不依赖主要组织相容性复合体的方式识别抗原,并发挥强大的细胞溶解和Th1样效应功能。因此,γδ T细胞是癌症免疫治疗中有吸引力的候选效应细胞。Vγ9Vδ2 T细胞对磷酸抗原作出反应,如(E)-4-羟基-3-甲基-丁-2-烯基焦磷酸(HMBPP),它是细菌通过类异戊二烯生物合成产生的;以及异戊烯基焦磷酸(IPP),它是真核细胞通过甲羟戊酸途径产生的。在生理条件下,未转化细胞中IPP的产生不足以激活γδ T细胞。肿瘤细胞中甲羟戊酸途径的失调导致IPP积累和γδ T细胞活化。因为氨基双膦酸盐(如帕米膦酸盐或唑来膦酸盐)抑制法尼基焦磷酸合酶(FPPS),该酶在甲羟戊酸途径中位于IPP下游起作用,所以氨基双膦酸盐可在治疗上提高细胞内IPP水平以及对γδ T细胞识别的敏感性。在具有药理学相关浓度氨基双膦酸盐的情况下,未转化细胞中IPP的积累效率低于肿瘤细胞,这使得我们能够通过用氨基双膦酸盐激活γδ T细胞来进行癌症免疫治疗。有趣的是,当用氨基双膦酸盐处理外周血单个核细胞时,IPP会在单核细胞中积累,因为这些细胞能够有效摄取药物。积累IPP的单核细胞成为抗原呈递细胞,并刺激外周血中的Vγ9Vδ2 T细胞。基于这些机制,我们开发了一种使用唑来膦酸盐和白细胞介素-2(IL-2)大规模扩增γδ T细胞培养物的技术。其他扩增γδ T细胞的方法利用合成磷酸抗原溴代醇焦磷酸(BrHPP)或2-甲基-3-丁烯基-1-焦磷酸(2M3B1PP)。所有这些方法都允许体外扩增,从而产生大量用于过继性免疫治疗的γδ T细胞。然而只有唑来膦酸盐是FDA批准的可商购试剂。唑来膦酸盐扩增的γδ T细胞表现出CD27(-)CD45RA(-)效应记忆表型,可以通过IFN-γ产生测定来评估其功能。