Suppr超能文献

使用唑来膦酸扩增人外周血γδ T细胞。

Expansion of human peripheral blood γδ T cells using zoledronate.

作者信息

Kondo Makoto, Izumi Takamichi, Fujieda Nao, Kondo Atsushi, Morishita Takeharu, Matsushita Hirokazu, Kakimi Kazuhiro

机构信息

Department of Immunotherapeutics (Medinet), University of Tokyo Hospital.

出版信息

J Vis Exp. 2011 Sep 9(55):3182. doi: 10.3791/3182.

Abstract

Human γδ T cells can recognize and respond to a wide variety of stress-induced antigens, thereby developing innate broad anti-tumor and anti-infective activity. The majority of γδ T cells in peripheral blood have the Vγ9Vδ2 T cell receptor. These cells recognize antigen in a major histocompatibility complex-independent manner and develop strong cytolytic and Th1-like effector functions. Therefore, γδ T cells are attractive candidate effector cells for cancer immunotherapy. Vγ9Vδ2 T cells respond to phosphoantigens such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is synthesized in bacteria via isoprenoid biosynthesis; and isopentenyl pyrophosphate (IPP), which is produced in eukaryotic cells through the mevalonate pathway. In physiological condition, the generation of IPP in nontransformed cell is not sufficient for the activation of γδ T cells. Dysregulation of mevalonate pathway in tumor cells leads to accumulation of IPP and γδ T cells activation. Because aminobisphosphonates (such as pamidronate or zoledronate) inhibit farnesyl pyrophosphate synthase (FPPS), the enzyme acting downstream of IPP in the mevalonate pathway, intracellular levels of IPP and sensitibity to γδ T cells recognition can be therapeutically increased by aminobisphosphonates. IPP accumulation is less efficient in nontransformed cells than tumor cells with a pharmacologically relevant concentration of aminobisphosphonates, that allow us immunotherapy for cancer by activating γδ T cells with aminobisphosphonates. Interestingly, IPP accumulates in monocytes when PBMC are treated with aminobisphosphonates, because of efficient drug uptake by these cells. Monocytes that accumulate IPP become antigen-presenting cells and stimulate Vγ9Vδ2 T cells in the peripheral blood. Based on these mechanisms, we developed a technique for large-scale expansion of γδ T cell cultures using zoledronate and interleukin-2 (IL-2). Other methods for expansion of γδ T cells utilize the synthetic phosphoantigens bromohydrin pyrophosphate (BrHPP) or 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP). All of these methods allow ex vivo expansion, resulting in large numbers of γδ T cells for use in adoptive immunotherapy. However, only zoledronate is an FDA-approved commercially available reagent. Zoledronate-expanded γδ T cells display CD27(-)CD45RA(-) effector memory phenotype and thier function can be evaluated by IFN-γ production assay.

摘要

人类γδ T细胞能够识别并对多种应激诱导抗原作出反应,从而产生先天性广泛的抗肿瘤和抗感染活性。外周血中的大多数γδ T细胞具有Vγ9Vδ2 T细胞受体。这些细胞以不依赖主要组织相容性复合体的方式识别抗原,并发挥强大的细胞溶解和Th1样效应功能。因此,γδ T细胞是癌症免疫治疗中有吸引力的候选效应细胞。Vγ9Vδ2 T细胞对磷酸抗原作出反应,如(E)-4-羟基-3-甲基-丁-2-烯基焦磷酸(HMBPP),它是细菌通过类异戊二烯生物合成产生的;以及异戊烯基焦磷酸(IPP),它是真核细胞通过甲羟戊酸途径产生的。在生理条件下,未转化细胞中IPP的产生不足以激活γδ T细胞。肿瘤细胞中甲羟戊酸途径的失调导致IPP积累和γδ T细胞活化。因为氨基双膦酸盐(如帕米膦酸盐或唑来膦酸盐)抑制法尼基焦磷酸合酶(FPPS),该酶在甲羟戊酸途径中位于IPP下游起作用,所以氨基双膦酸盐可在治疗上提高细胞内IPP水平以及对γδ T细胞识别的敏感性。在具有药理学相关浓度氨基双膦酸盐的情况下,未转化细胞中IPP的积累效率低于肿瘤细胞,这使得我们能够通过用氨基双膦酸盐激活γδ T细胞来进行癌症免疫治疗。有趣的是,当用氨基双膦酸盐处理外周血单个核细胞时,IPP会在单核细胞中积累,因为这些细胞能够有效摄取药物。积累IPP的单核细胞成为抗原呈递细胞,并刺激外周血中的Vγ9Vδ2 T细胞。基于这些机制,我们开发了一种使用唑来膦酸盐和白细胞介素-2(IL-2)大规模扩增γδ T细胞培养物的技术。其他扩增γδ T细胞的方法利用合成磷酸抗原溴代醇焦磷酸(BrHPP)或2-甲基-3-丁烯基-1-焦磷酸(2M3B1PP)。所有这些方法都允许体外扩增,从而产生大量用于过继性免疫治疗的γδ T细胞。然而只有唑来膦酸盐是FDA批准的可商购试剂。唑来膦酸盐扩增的γδ T细胞表现出CD27(-)CD45RA(-)效应记忆表型,可以通过IFN-γ产生测定来评估其功能。

相似文献

1
Expansion of human peripheral blood γδ T cells using zoledronate.
J Vis Exp. 2011 Sep 9(55):3182. doi: 10.3791/3182.
2
Essential requirements of zoledronate-induced cytokine and γδ T cell proliferative responses.
J Immunol. 2013 Aug 1;191(3):1346-55. doi: 10.4049/jimmunol.1300603. Epub 2013 Jun 21.
3
Butyrophilin 3A/CD277-Dependent Activation of Human γδ T Cells: Accessory Cell Capacity of Distinct Leukocyte Populations.
J Immunol. 2016 Oct 15;197(8):3059-3068. doi: 10.4049/jimmunol.1600913. Epub 2016 Sep 12.
5
Peripheral blood monocytes are responsible for gammadelta T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP.
Br J Haematol. 2009 Jan;144(2):245-50. doi: 10.1111/j.1365-2141.2008.07435.x. Epub 2008 Nov 7.
9
Small molecules for the activation of human gammadelta T cell responses against infection.
Recent Pat Antiinfect Drug Discov. 2008 Jan;3(1):1-9. doi: 10.2174/157489108783413218.

引用本文的文献

1
Chemical engineering of γδ T cells with cancer cell-targeting antibodies for enhanced tumor immunotherapy.
Natl Sci Rev. 2025 Jun 27;12(8):nwaf256. doi: 10.1093/nsr/nwaf256. eCollection 2025 Aug.
2
Targeted expansion of cytotoxic T cells using IL-12 and CD137L supplementation enhances antitumor efficacy.
Mol Ther Oncol. 2025 May 14;33(2):200996. doi: 10.1016/j.omton.2025.200996. eCollection 2025 Jun 18.
3
From to models: towards a novel approach to investigate the efficacy of immunotherapies on exhausted Vγ9Vδ2 T cells?
Front Immunol. 2025 Apr 22;16:1556982. doi: 10.3389/fimmu.2025.1556982. eCollection 2025.
4
5
γδ T Are Significantly Impacted by CLL Burden but Only Mildly Influenced by M-MDSCs.
Cancers (Basel). 2025 Jan 14;17(2):254. doi: 10.3390/cancers17020254.
6
Gamma delta T cells in cancer therapy: from tumor recognition to novel treatments.
Front Med (Lausanne). 2024 Dec 19;11:1480191. doi: 10.3389/fmed.2024.1480191. eCollection 2024.
7
Arming Vδ2 T Cells with Chimeric Antigen Receptors to Combat Cancer.
Clin Cancer Res. 2024 Aug 1;30(15):3105-3116. doi: 10.1158/1078-0432.CCR-23-3495.
8
Advancements in γδT cell engineering: paving the way for enhanced cancer immunotherapy.
Front Immunol. 2024 Mar 21;15:1360237. doi: 10.3389/fimmu.2024.1360237. eCollection 2024.
9
Isolation and expansion of pure and functional γδ T cells.
Front Immunol. 2024 Feb 15;15:1336870. doi: 10.3389/fimmu.2024.1336870. eCollection 2024.
10
γδ-Enriched CAR-T cell therapy for bone metastatic castrate-resistant prostate cancer.
Sci Adv. 2023 May 3;9(18):eadf0108. doi: 10.1126/sciadv.adf0108.

本文引用的文献

1
Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity.
Nat Rev Immunol. 2010 Jul;10(7):467-78. doi: 10.1038/nri2781. Epub 2010 Jun 11.
3
Impact of culture medium on the expansion of T cells for immunotherapy.
Cytotherapy. 2009;11(7):936-46. doi: 10.3109/14653240903219114.
5
Peripheral blood monocytes are responsible for gammadelta T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP.
Br J Haematol. 2009 Jan;144(2):245-50. doi: 10.1111/j.1365-2141.2008.07435.x. Epub 2008 Nov 7.
7
Perspectives of gammadelta T cells in tumor immunology.
Cancer Res. 2007 Jan 1;67(1):5-8. doi: 10.1158/0008-5472.CAN-06-3069.
8
Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study.
Cancer Immunol Immunother. 2007 Apr;56(4):469-76. doi: 10.1007/s00262-006-0199-6. Epub 2006 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验