INRIA Rocquencourt, BANG project team, Le Chesnay Cedex, France.
PLoS Comput Biol. 2011 Sep;7(9):e1002143. doi: 10.1371/journal.pcbi.1002143. Epub 2011 Sep 8.
Circadian timing largely modifies efficacy and toxicity of many anticancer drugs. Recent findings suggest that optimal circadian delivery patterns depend on the patient genetic background. We present here a combined experimental and mathematical approach for the design of chronomodulated administration schedules tailored to the patient molecular profile. As a proof of concept we optimized exposure of Caco-2 colon cancer cells to irinotecan (CPT11), a cytotoxic drug approved for the treatment of colorectal cancer. CPT11 was bioactivated into SN38 and its efflux was mediated by ATP-Binding-Cassette (ABC) transporters in Caco-2 cells. After cell synchronization with a serum shock defining Circadian Time (CT) 0, circadian rhythms with a period of 26 h 50 (SD 63 min) were observed in the mRNA expression of clock genes REV-ERBα, PER2, BMAL1, the drug target topoisomerase 1 (TOP1), the activation enzyme carboxylesterase 2 (CES2), the deactivation enzyme UDP-glucuronosyltransferase 1, polypeptide A1 (UGT1A1), and efflux transporters ABCB1, ABCC1, ABCC2 and ABCG2. DNA-bound TOP1 protein amount in presence of CPT11, a marker of the drug PD, also displayed circadian variations. A mathematical model of CPT11 molecular pharmacokinetics-pharmacodynamics (PK-PD) was designed and fitted to experimental data. It predicted that CPT11 bioactivation was the main determinant of CPT11 PD circadian rhythm. We then adopted the therapeutics strategy of maximizing efficacy in non-synchronized cells, considered as cancer cells, under a constraint of maximum toxicity in synchronized cells, representing healthy ones. We considered exposure schemes in the form of an initial concentration of CPT11 given at a particular CT, over a duration ranging from 1 to 27 h. For any dose of CPT11, optimal exposure durations varied from 3h40 to 7h10. Optimal schemes started between CT2h10 and CT2h30, a time interval corresponding to 1h30 to 1h50 before the nadir of CPT11 bioactivation rhythm in healthy cells.
昼夜节律在很大程度上改变了许多抗癌药物的疗效和毒性。最近的研究结果表明,最佳的昼夜传递模式取决于患者的遗传背景。我们在这里提出了一种结合实验和数学的方法,用于设计针对患者分子特征的时间治疗方案。作为概念验证,我们优化了 Caco-2 结肠癌细胞对伊立替康(CPT11)的暴露,CPT11 是一种批准用于治疗结直肠癌的细胞毒性药物。CPT11 在 Caco-2 细胞中被生物转化为 SN38,并通过三磷酸腺苷结合盒(ABC)转运体将其排出。在经历了一个以血清冲击定义的生物钟时间(CT)0 的细胞同步后,观察到时钟基因 REV-ERBα、PER2、BMAL1、药物靶点拓扑异构酶 1(TOP1)、激活酶羧酸酯酶 2(CES2)、失活酶 UDP-葡萄糖醛酸基转移酶 1、多肽 A1(UGT1A1)和外排转运体 ABCB1、ABCC1、ABCC2 和 ABCG2 的 mRNA 表达呈现出 26 小时 50 分钟(SD 63 分钟)的昼夜节律。CPT11 存在时 DNA 结合的 TOP1 蛋白量,作为药物 PD 的标志物,也表现出昼夜变化。设计并拟合了一个 CPT11 分子药代动力学-药效学(PK-PD)的数学模型来解释实验数据。它预测 CPT11 的生物激活是 CPT11 PD 昼夜节律的主要决定因素。然后,我们采用了一种治疗策略,即在非同步细胞(被认为是癌细胞)中最大程度地提高疗效,同时在同步细胞(代表健康细胞)中最大程度地降低毒性。我们考虑了以 CPT11 的初始浓度在特定的 CT 下给药的暴露方案,持续时间从 1 到 27 小时不等。对于任何剂量的 CPT11,最佳的暴露时间从 3 小时 40 分钟到 7 小时 10 分钟不等。最佳方案从 CT2h10 到 CT2h30 开始,这一时间间隔对应于健康细胞中 CPT11 生物激活节律的最低点前 1 小时 30 分钟到 1 小时 50 分钟。