Suppr超能文献

中性鞘磷脂酶的激活先于神经元暴露于促炎细胞因子肿瘤坏死因子-α时 NADPH 氧化酶依赖性损伤。

Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-α.

机构信息

Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA.

出版信息

J Neurosci Res. 2012 Jan;90(1):229-42. doi: 10.1002/jnr.22748. Epub 2011 Sep 19.

Abstract

Inflammation accompanied by severe oxidative stress plays a vital role in the orchestration and progression of neurodegeneration prevalent in chronic and acute central nervous system pathologies as well as in aging. The proinflammatory cytokine tumor necrosis factor-α (TNFα) elicits the formation of the bioactive ceramide by stimulating the hydrolysis of the membrane lipid sphingomyelin by sphingomyelinase activities. Ceramide stimulates the formation of reactive oxygen species (ROS) and apoptotic mechanisms in both neurons and nonneuronal cells, establishing a link between sphingolipid metabolism and oxidative stress. We demonstrated in SH-SY5Y human neuroblastoma cells and primary cortical neurons that TNFα is a potent stimulator of Mg(2+) -dependent neutral sphingomyelinase (Mg(2+) -nSMase) activity, and sphingomyelin hydrolysis, rather than de novo synthesis, was the predominant source of ceramide increases. Mg(2+) -nSMase activity preceded an accumulation of ROS by a neuronal NADPH oxidase (NOX). Notably, TNFα provoked an NOX-dependent oxidative damage to sphingosine kinase-1, which generates sphingosine-1-phosphate, a ceramide metabolite associated with neurite outgrowth. Indeed, ceramide and ROS inhibited neurite outgrowth of dorsal root ganglion neurons by disrupting growth cone motility. Blunting ceramide and ROS formation both rescued sphingosine kinase-1 activity and neurite outgrowth. Our studies suggest that TNFα-mediated activation of Mg(2+) -nSMase and NOX in neuronal cells not only produced the neurotoxic intermediates ceramide and ROS but also directly antagonized neuronal survival mechanisms, thus accelerating neurodegeneration.

摘要

炎症伴随着严重的氧化应激在神经退行性变的协调和进展中起着至关重要的作用,这种退行性变普遍存在于慢性和急性中枢神经系统疾病以及衰老中。促炎细胞因子肿瘤坏死因子-α(TNFα)通过刺激鞘磷脂酶活性水解细胞膜脂质鞘磷脂,引发生物活性神经酰胺的形成。神经酰胺刺激神经元和非神经元细胞中活性氧(ROS)和凋亡机制的形成,在鞘脂代谢和氧化应激之间建立联系。我们在 SH-SY5Y 人神经母细胞瘤细胞和原代皮质神经元中证明,TNFα是 Mg2+依赖性中性鞘磷脂酶(Mg2+-nSMase)活性和鞘磷脂水解的有力刺激物,而不是从头合成,是神经酰胺增加的主要来源。Mg2+-nSMase 活性先于神经元 NADPH 氧化酶(NOX)的 ROS 积累。值得注意的是,TNFα引起了与神经突生长相关的神经酰胺代谢物鞘氨醇激酶-1 的 NOX 依赖性氧化损伤。事实上,神经酰胺和 ROS 通过破坏生长锥的运动来抑制背根神经节神经元的神经突生长。抑制神经酰胺和 ROS 的形成都挽救了鞘氨醇激酶-1 的活性和神经突生长。我们的研究表明,TNFα介导的神经元细胞中 Mg2+-nSMase 和 NOX 的激活不仅产生了神经毒性中间产物神经酰胺和 ROS,而且直接拮抗了神经元存活机制,从而加速了神经退行性变。

相似文献

2
Ceramide kinase regulates TNFα-stimulated NADPH oxidase activity and eicosanoid biosynthesis in neuroblastoma cells.
Cell Signal. 2012 Jun;24(6):1126-33. doi: 10.1016/j.cellsig.2011.12.020. Epub 2011 Dec 30.
8
The neutral sphingomyelinase-2 is involved in angiogenic signaling triggered by oxidized LDL.
Free Radic Biol Med. 2016 Apr;93:204-16. doi: 10.1016/j.freeradbiomed.2016.02.006. Epub 2016 Feb 5.

引用本文的文献

1
Alaska's Flora as a Treatment for Cancer.
Int J Biopharm Sci. 2024 Dec;2(2). Epub 2024 Aug 16.
4
Sphingolipid metabolism in brain insulin resistance and neurological diseases.
Front Endocrinol (Lausanne). 2023 Oct 6;14:1243132. doi: 10.3389/fendo.2023.1243132. eCollection 2023.
5
A Comprehensive Review on the Interplay between spp. and Host Sphingolipid Metabolites.
Cells. 2021 Nov 17;10(11):3201. doi: 10.3390/cells10113201.
7
Sphingolipids as Regulators of Neuro-Inflammation and NADPH Oxidase 2.
Neuromolecular Med. 2021 Mar;23(1):25-46. doi: 10.1007/s12017-021-08646-2. Epub 2021 Feb 5.
10
Combinatorial Efficacy of Quercitin and Nanoliposomal Ceramide for Acute Myeloid Leukemia.
Int J Biopharm Sci. 2018;1(1). doi: 10.31021/ijbs.20181106. Epub 2018 Jan 31.

本文引用的文献

1
Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase.
Mol Cell Neurosci. 2009 Jun;41(2):274-85. doi: 10.1016/j.mcn.2009.03.007. Epub 2009 Apr 1.
2
Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death.
J Neurol Sci. 2009 Mar 15;278(1-2):5-15. doi: 10.1016/j.jns.2008.12.010. Epub 2009 Jan 14.
3
Regulation of neutral sphingomyelinase-2 by GSH: a new insight to the role of oxidative stress in aging-associated inflammation.
J Lipid Res. 2007 Nov;48(11):2443-52. doi: 10.1194/jlr.M700227-JLR200. Epub 2007 Aug 10.
5
Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide.
Mol Pharmacol. 2007 Aug;72(2):341-9. doi: 10.1124/mol.106.033738. Epub 2007 May 23.
6
NOX family NADPH oxidases: not just in mammals.
Biochimie. 2007 Sep;89(9):1107-12. doi: 10.1016/j.biochi.2007.01.012. Epub 2007 Feb 20.
7
Regulation and functional roles of sphingosine kinases.
Naunyn Schmiedebergs Arch Pharmacol. 2007 Feb;374(5-6):413-28. doi: 10.1007/s00210-007-0132-3. Epub 2007 Jan 23.
8
The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
Physiol Rev. 2007 Jan;87(1):245-313. doi: 10.1152/physrev.00044.2005.
9
A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phox.
Mol Biol Cell. 2007 Feb;18(2):441-54. doi: 10.1091/mbc.e06-08-0731. Epub 2006 Nov 22.
10
The extended family of neutral sphingomyelinases.
Biochemistry. 2006 Sep 26;45(38):11247-56. doi: 10.1021/bi061307z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验