MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK.
Hum Mol Genet. 2011 Dec 15;20(24):4840-50. doi: 10.1093/hmg/ddr423. Epub 2011 Sep 20.
Mutations in the retinitis pigmentosa GTPase regulator (RPGR) protein cause one of the most common and severe forms of inherited retinal dystrophy. In spite of numerous studies, the precise function of RPGR remains unclear, as is the mechanism by which RPGR mutations cause retinal degeneration. We have analysed the function of RPGR by RNA interference-mediated translational suppression [knockdown (KD)] using a model cellular system for studying the formation, maintenance and function of primary cilia (human telomerase-immortalized retinal pigmented epithelium 1 cells). We observed that RPGR-deficient cells exhibited reduced numbers of cilia, slower cell cycle progression and impaired attachment to fibronectin, but showed no migration defects in a wound-healing assay. RPGR KD cells showed stronger actin filaments, associated with basal dysregulation of the Akt, Erk1/2, focal adhesion kinase and Src signalling pathways, as well as a 20% reduction in β1-integrin receptors at the cell surface and impaired fibronectin-induced signalling. Stronger actin filaments and impairment of the above signalling pathways suggest a common underlying mechanism for all of the cellular phenotypes observed in RPGR KD cells. Our data underline a novel function for RPGR in cilia formation and in the regulation of actin stress filaments, suggesting that, in the retina, it may regulate nascent photoreceptor disc formation by regulating actin-mediated membrane extension.
RPGR 蛋白的突变导致最常见和最严重形式的遗传性视网膜营养不良之一。尽管进行了大量研究,但 RPGR 的精确功能仍不清楚,其突变导致视网膜变性的机制也不清楚。我们使用研究初级纤毛形成、维持和功能的模型细胞系统(人端粒酶永生化视网膜色素上皮 1 细胞),通过 RNA 干扰介导的翻译抑制 [敲低 (KD)] 分析了 RPGR 的功能。我们观察到 RPGR 缺陷细胞的纤毛数量减少、细胞周期进程减慢且对纤连蛋白的黏附性受损,但在划痕愈合测定中没有迁移缺陷。RPGR KD 细胞显示出更强的肌动蛋白丝,伴随着 Akt、Erk1/2、黏着斑激酶和Src 信号通路的基础失调,以及细胞表面的β1 整合素受体减少 20%,并削弱了纤连蛋白诱导的信号。更强的肌动蛋白丝和上述信号通路的损伤表明 RPGR KD 细胞中观察到的所有细胞表型具有共同的潜在机制。我们的数据强调了 RPGR 在纤毛形成和肌动蛋白应激丝调节中的新功能,表明在视网膜中,它可能通过调节肌动蛋白介导的膜延伸来调节新生光感受器盘的形成。