Sun Xun, Park James H, Gumerson Jessica, Wu Zhijian, Swaroop Anand, Qian Haohua, Roll-Mecak Antonina, Li Tiansen
Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, Bethesda, MD 20892;
Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892;
Proc Natl Acad Sci U S A. 2016 May 24;113(21):E2925-34. doi: 10.1073/pnas.1523201113. Epub 2016 May 9.
Mutations in the X-linked retinitis pigmentosa GTPase regulator (RPGR) gene are a major cause of retinitis pigmentosa, a blinding retinal disease resulting from photoreceptor degeneration. A photoreceptor specific ORF15 variant of RPGR (RPGR(ORF15)), carrying multiple Glu-Gly tandem repeats and a C-terminal basic domain of unknown function, localizes to the connecting cilium where it is thought to regulate cargo trafficking. Here we show that tubulin tyrosine ligase like-5 (TTLL5) glutamylates RPGR(ORF15) in its Glu-Gly-rich repetitive region containing motifs homologous to the α-tubulin C-terminal tail. The RPGR(ORF15) C-terminal basic domain binds to the noncatalytic cofactor interaction domain unique to TTLL5 among TTLL family glutamylases and targets TTLL5 to glutamylate RPGR. Only TTLL5 and not other TTLL family glutamylases interacts with RPGR(ORF15) when expressed transiently in cells. Consistent with this, a Ttll5 mutant mouse displays a complete loss of RPGR glutamylation without marked changes in tubulin glutamylation levels. The Ttll5 mutant mouse develops slow photoreceptor degeneration with early mislocalization of cone opsins, features resembling those of Rpgr-null mice. Moreover TTLL5 disease mutants that cause human retinal dystrophy show impaired glutamylation of RPGR(ORF15) Thus, RPGR(ORF15) is a novel glutamylation substrate, and this posttranslational modification is critical for its function in photoreceptors. Our study uncovers the pathogenic mechanism whereby absence of RPGR(ORF15) glutamylation leads to retinal pathology in patients with TTLL5 gene mutations and connects these two genes into a common disease pathway.
X连锁视网膜色素变性GTP酶调节因子(RPGR)基因突变是视网膜色素变性的主要病因,视网膜色素变性是一种由光感受器退化导致的致盲性视网膜疾病。RPGR的光感受器特异性ORF15变体(RPGR(ORF15))携带多个Glu-Gly串联重复序列和一个功能未知的C端碱性结构域,定位于连接纤毛,据认为在那里调节货物运输。在这里,我们表明微管蛋白酪氨酸连接酶样5(TTLL5)在其富含Glu-Gly的重复区域对RPGR(ORF15)进行谷氨酰化,该区域包含与α-微管蛋白C端尾部同源的基序。RPGR(ORF15)的C端碱性结构域与TTLL家族谷氨酰化酶中TTLL5特有的非催化辅因子相互作用结构域结合,并将TTLL5靶向对RPGR进行谷氨酰化。当在细胞中瞬时表达时,只有TTLL5而不是其他TTLL家族谷氨酰化酶与RPGR(ORF15)相互作用。与此一致的是,Ttll5突变小鼠表现出RPGR谷氨酰化完全丧失,而微管蛋白谷氨酰化水平没有明显变化。Ttll5突变小鼠出现缓慢的光感受器退化,伴有视锥蛋白早期定位错误,这些特征与Rpgr基因敲除小鼠相似。此外,导致人类视网膜营养不良的TTLL5疾病突变体显示RPGR(ORF15)的谷氨酰化受损。因此,RPGR(ORF15)是一种新的谷氨酰化底物,这种翻译后修饰对其在光感受器中的功能至关重要。我们的研究揭示了RPGR(ORF15)谷氨酰化缺失导致TTLL5基因突变患者视网膜病变的致病机制,并将这两个基因连接到一个共同的疾病途径中。