Megaw Roly, Abu-Arafeh Hashem, Jungnickel Melissa, Mellough Carla, Gurniak Christine, Witke Walter, Zhang Wei, Khanna Hemant, Mill Pleasantine, Dhillon Baljean, Wright Alan F, Lako Majlinda, Ffrench-Constant Charles
MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
Nat Commun. 2017 Aug 16;8(1):271. doi: 10.1038/s41467-017-00111-8.
Mutations in the Retinitis Pigmentosa GTPase Regulator (RPGR) cause X-linked RP (XLRP), an untreatable, inherited retinal dystrophy that leads to premature blindness. RPGR localises to the photoreceptor connecting cilium where its function remains unknown. Here we show, using murine and human induced pluripotent stem cell models, that RPGR interacts with and activates the actin-severing protein gelsolin, and that gelsolin regulates actin disassembly in the connecting cilium, thus facilitating rhodopsin transport to photoreceptor outer segments. Disease-causing RPGR mutations perturb this RPGR-gelsolin interaction, compromising gelsolin activation. Both RPGR and Gelsolin knockout mice show abnormalities of actin polymerisation and mislocalisation of rhodopsin in photoreceptors. These findings reveal a clinically-significant role for RPGR in the activation of gelsolin, without which abnormalities in actin polymerisation in the photoreceptor connecting cilia cause rhodopsin mislocalisation and eventual retinal degeneration in XLRP.Mutations in the Retinitis Pigmentosa GTPase Regulator (RPGR) cause retinal dystrophy, but how this arises at a molecular level is unclear. Here, the authors show in induced pluripotent stem cells and mouse knockouts that RPGR mediates actin dynamics in photoreceptors via the actin-severing protein, gelsolin.
视网膜色素变性GTP酶调节蛋白(RPGR)的突变会导致X连锁视网膜色素变性(XLRP),这是一种无法治疗的遗传性视网膜营养不良症,可导致过早失明。RPGR定位于光感受器连接纤毛,其功能尚不清楚。在这里,我们使用小鼠和人类诱导多能干细胞模型表明,RPGR与肌动蛋白切割蛋白凝溶胶蛋白相互作用并激活它,并且凝溶胶蛋白调节连接纤毛中的肌动蛋白解聚,从而促进视紫红质向光感受器外段的运输。致病的RPGR突变扰乱了这种RPGR-凝溶胶蛋白相互作用,损害了凝溶胶蛋白的激活。RPGR和凝溶胶蛋白基因敲除小鼠均表现出光感受器中肌动蛋白聚合异常和视紫红质定位错误。这些发现揭示了RPGR在激活凝溶胶蛋白方面具有临床意义的作用,没有它,光感受器连接纤毛中肌动蛋白聚合异常会导致视紫红质定位错误,并最终导致XLRP中的视网膜变性。视网膜色素变性GTP酶调节蛋白(RPGR)的突变会导致视网膜营养不良,但在分子水平上这是如何发生的尚不清楚。在这里,作者在诱导多能干细胞和小鼠基因敲除模型中表明,RPGR通过肌动蛋白切割蛋白凝溶胶蛋白介导光感受器中的肌动蛋白动力学。