General Electric Global Research Center, Niskayuna, NY 12309, USA.
IEEE Trans Med Imaging. 2012 Feb;31(2):326-40. doi: 10.1109/TMI.2011.2168825. Epub 2011 Sep 19.
Measuring the 3D motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the 2D motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the 3D displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a 3D displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue.
使用磁共振(MR)标记测量肌肉组织(如心脏或舌头)的 3D 运动,通常通过对正交图像堆栈上测量的 2D 运动信息进行插值来完成。肌肉组织的不可压缩性是对重建运动场的重要约束,可显著有助于克服可用运动信息的稀疏性和不完整性。以前利用这一事实的方法产生了具有有限准确性的不可压缩运动。在本文中,我们提出了一种不可压缩变形估计算法(IDEA),该算法从标记的 MR 图像重建 3D 位移场的密集表示,并且估计的运动场具有高精度的不可压缩性。在每个成像时间帧中,首先处理标记的图像以确定相对于参考时间的每个像素的位移矢量分量。然后,IDEA 应用平滑、无散度、矢量样条插值在中间离散时间处的速度场,使得速度场的集合随时间积分以匹配观察到的位移分量。通过这个过程,IDEA 得到了与我们的观察结果相匹配的 3D 位移场的密集估计,并且也对应于不可压缩运动。该方法通过数值模拟和心脏和舌头的体内人体实验进行了验证。