Suppr超能文献

基于标记磁共振图像的不可压缩变形估计算法(IDEA)。

Incompressible deformation estimation algorithm (IDEA) from tagged MR images.

机构信息

General Electric Global Research Center, Niskayuna, NY 12309, USA.

出版信息

IEEE Trans Med Imaging. 2012 Feb;31(2):326-40. doi: 10.1109/TMI.2011.2168825. Epub 2011 Sep 19.

Abstract

Measuring the 3D motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the 2D motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the 3D displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a 3D displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue.

摘要

使用磁共振(MR)标记测量肌肉组织(如心脏或舌头)的 3D 运动,通常通过对正交图像堆栈上测量的 2D 运动信息进行插值来完成。肌肉组织的不可压缩性是对重建运动场的重要约束,可显著有助于克服可用运动信息的稀疏性和不完整性。以前利用这一事实的方法产生了具有有限准确性的不可压缩运动。在本文中,我们提出了一种不可压缩变形估计算法(IDEA),该算法从标记的 MR 图像重建 3D 位移场的密集表示,并且估计的运动场具有高精度的不可压缩性。在每个成像时间帧中,首先处理标记的图像以确定相对于参考时间的每个像素的位移矢量分量。然后,IDEA 应用平滑、无散度、矢量样条插值在中间离散时间处的速度场,使得速度场的集合随时间积分以匹配观察到的位移分量。通过这个过程,IDEA 得到了与我们的观察结果相匹配的 3D 位移场的密集估计,并且也对应于不可压缩运动。该方法通过数值模拟和心脏和舌头的体内人体实验进行了验证。

相似文献

3
3D tongue motion from tagged and cine MR images.来自标记和电影磁共振图像的三维舌运动
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):41-8. doi: 10.1007/978-3-642-40760-4_6.

引用本文的文献

1
Analysis of Tongue Muscle Strain During Speech From Multimodal Magnetic Resonance Imaging.多模态磁共振成像分析言语时舌肌紧张度
J Speech Lang Hear Res. 2023 Feb 13;66(2):513-526. doi: 10.1044/2022_JSLHR-22-00329. Epub 2023 Jan 30.

本文引用的文献

2
Shortest path refinement for motion estimation from tagged MR images.基于标记磁共振图像的运动估计的最短路径细化。
IEEE Trans Med Imaging. 2010 Aug;29(8):1560-72. doi: 10.1109/TMI.2010.2045509. Epub 2010 Mar 18.
3
4D MAP image reconstruction incorporating organ motion.结合器官运动的4D MAP图像重建
Inf Process Med Imaging. 2009;21:676-87. doi: 10.1007/978-3-642-02498-6_56.
5
Estimating Motion From MRI Data.从MRI数据估计运动。
Proc IEEE Inst Electr Electron Eng. 2003 Oct;9(10):1627-1648. doi: 10.1109/JPROC.2003.817872.
7
Analysis of Cardiac Function from MR Images.基于磁共振图像的心脏功能分析。
IEEE Comput Graph Appl. 1997 Feb;17(1):30-38. doi: 10.1109/38.576854.
9
Landmark matching via large deformation diffeomorphisms.基于大变形微分同胚的地标匹配。
IEEE Trans Image Process. 2000;9(8):1357-70. doi: 10.1109/83.855431.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验