Suppr超能文献

多尺度计算模型用于光遗传学控制心脏功能。

Multiscale computational models for optogenetic control of cardiac function.

机构信息

Department of Bioengineering, Stanford University, Stanford, California, USA.

出版信息

Biophys J. 2011 Sep 21;101(6):1326-34. doi: 10.1016/j.bpj.2011.08.004. Epub 2011 Sep 20.

Abstract

The ability to stimulate mammalian cells with light has significantly changed our understanding of electrically excitable tissues in health and disease, paving the way toward various novel therapeutic applications. Here, we demonstrate the potential of optogenetic control in cardiac cells using a hybrid experimental/computational technique. Experimentally, we introduced channelrhodopsin-2 into undifferentiated human embryonic stem cells via a lentiviral vector, and sorted and expanded the genetically engineered cells. Via directed differentiation, we created channelrhodopsin-expressing cardiomyocytes, which we subjected to optical stimulation. To quantify the impact of photostimulation, we assessed electrical, biochemical, and mechanical signals using patch-clamping, multielectrode array recordings, and video microscopy. Computationally, we introduced channelrhodopsin-2 into a classic autorhythmic cardiac cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, the channel opens and allows sodium ions to enter the cell, inducing a fast upstroke of the transmembrane potential. We calibrated the channelrhodopsin-expressing cell model using single action potential readings for different photostimulation amplitudes, pulse widths, and frequencies. To illustrate the potential of the proposed approach, we virtually injected channelrhodopsin-expressing cells into different locations of a human heart, and explored its activation sequences upon optical stimulation. Our experimentally calibrated computational toolbox allows us to virtually probe landscapes of process parameters, and identify optimal photostimulation sequences toward pacing hearts with light.

摘要

利用光刺激哺乳动物细胞的能力极大地改变了我们对健康和疾病中电兴奋组织的理解,为各种新的治疗应用铺平了道路。在这里,我们使用混合实验/计算技术展示了光遗传学控制在心脏细胞中的潜力。在实验中,我们通过慢病毒载体将通道视紫红质-2引入未分化的人类胚胎干细胞中,并对其进行了分选和扩增。通过定向分化,我们创建了表达通道视紫红质的心肌细胞,并对其进行了光刺激。为了量化光刺激的影响,我们使用膜片钳、多电极阵列记录和视频显微镜评估了电、生化和机械信号。在计算上,我们通过一个由光敏门控变量控制的附加光电流将通道视紫红质-2引入到一个经典的自动节律性心脏细胞模型中。光刺激时,通道打开,允许钠离子进入细胞,引起跨膜电位的快速上升。我们使用不同光刺激幅度、脉冲宽度和频率的单个动作电位读数对表达通道视紫红质的细胞模型进行了校准。为了说明所提出方法的潜力,我们在虚拟条件下将表达通道视紫红质的细胞注入到人心的不同位置,并探索了光刺激下的激活序列。我们实验校准的计算工具箱允许我们虚拟探测过程参数的景观,并确定用光起搏心脏的最佳光刺激序列。

相似文献

1
Multiscale computational models for optogenetic control of cardiac function.
Biophys J. 2011 Sep 21;101(6):1326-34. doi: 10.1016/j.bpj.2011.08.004. Epub 2011 Sep 20.
2
Computational Optogenetics: A Novel Continuum Framework for the Photoelectrochemistry of Living Systems.
J Mech Phys Solids. 2012 Jun 1;60(6):1158-1178. doi: 10.1016/j.jmps.2012.02.004.
3
Systemic gene transfer enables optogenetic pacing of mouse hearts.
Cardiovasc Res. 2015 May 1;106(2):338-43. doi: 10.1093/cvr/cvv004. Epub 2015 Jan 12.
4
Human pluripotent stem cell tools for cardiac optogenetics.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6171-4. doi: 10.1109/EMBC.2014.6945038.
5
Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias.
Methods Mol Biol. 2016;1408:293-302. doi: 10.1007/978-1-4939-3512-3_20.
8
Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins.
Cardiovasc Res. 2014 Apr 1;102(1):176-87. doi: 10.1093/cvr/cvu037. Epub 2014 Feb 11.
10
Genetic engineering of somatic cells to study and improve cardiac function.
Europace. 2012 Nov;14 Suppl 5(Suppl 5):v40-v49. doi: 10.1093/europace/eus269.

引用本文的文献

2
Optogenetically mediated large volume suppression and synchronized excitation of human ventricular cardiomyocytes.
Pflugers Arch. 2023 Dec;475(12):1479-1503. doi: 10.1007/s00424-023-02831-x. Epub 2023 Jul 7.
3
Editorial: Cardiac optogenetics: Using light to observe and excite the heart.
Front Physiol. 2022 Oct 11;13:1031062. doi: 10.3389/fphys.2022.1031062. eCollection 2022.
4
Remote Optogenetics Using Up/Down-Conversion Phosphors.
Front Mol Biosci. 2021 Nov 5;8:771717. doi: 10.3389/fmolb.2021.771717. eCollection 2021.
5
Double Two-State Opsin Model With Autonomous Parameter Inference.
Front Comput Neurosci. 2021 Jun 16;15:688331. doi: 10.3389/fncom.2021.688331. eCollection 2021.
6
Application of Optogenetics for Muscle Cells and Stem Cells.
Adv Exp Med Biol. 2021;1293:359-375. doi: 10.1007/978-981-15-8763-4_23.
7
Cardiac optogenetics: a decade of enlightenment.
Nat Rev Cardiol. 2021 May;18(5):349-367. doi: 10.1038/s41569-020-00478-0. Epub 2020 Dec 18.
8
Non-invasive red-light optogenetic control of Drosophila cardiac function.
Commun Biol. 2020 Jun 29;3(1):336. doi: 10.1038/s42003-020-1065-3.
9
Near-infrared light driven tissue-penetrating cardiac optogenetics via upconversion nanoparticles in vivo.
Biomed Opt Express. 2020 Feb 18;11(3):1401-1416. doi: 10.1364/BOE.381480. eCollection 2020 Mar 1.
10
Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues.
J Tissue Eng. 2019 Apr 17;10:2041731419841748. doi: 10.1177/2041731419841748. eCollection 2019 Jan-Dec.

本文引用的文献

1
Computational modeling of chemo-electro-mechanical coupling: a novel implicit monolithic finite element approach.
Int J Numer Method Biomed Eng. 2013 Oct;29(10):1104-33. doi: 10.1002/cnm.2565. Epub 2013 Jun 24.
2
Characterisation of electrophysiological conduction in cardiomyocyte co-cultures using co-occurrence analysis.
Comput Methods Biomech Biomed Engin. 2013;16(2):185-97. doi: 10.1080/10255842.2011.615310. Epub 2011 Oct 4.
3
A novel method for quantifying the in-vivo mechanical effect of material injected into a myocardial infarction.
Ann Thorac Surg. 2011 Sep;92(3):935-41. doi: 10.1016/j.athoracsur.2011.04.089.
4
High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7595-600. doi: 10.1073/pnas.1017210108. Epub 2011 Apr 19.
5
A fully implicit finite element method for bidomain models of cardiac electrophysiology.
Comput Methods Biomech Biomed Engin. 2012;15(6):645-56. doi: 10.1080/10255842.2011.554410. Epub 2011 May 24.
6
Channelrhodopsin engineering and exploration of new optogenetic tools.
Nat Methods. 2011 Jan;8(1):39-42. doi: 10.1038/nmeth.f.327. Epub 2010 Dec 20.
7
Optogenetics.
Nat Methods. 2011 Jan;8(1):26-9. doi: 10.1038/nmeth.f.324. Epub 2010 Dec 20.
8
Optogenetic control of cardiac function.
Science. 2010 Nov 12;330(6006):971-4. doi: 10.1126/science.1195929.
9
Global and local fMRI signals driven by neurons defined optogenetically by type and wiring.
Nature. 2010 Jun 10;465(7299):788-92. doi: 10.1038/nature09108.
10
A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis.
J Theor Biol. 2010 Aug 7;265(3):433-42. doi: 10.1016/j.jtbi.2010.04.023. Epub 2010 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验