Department of Bioengineering, Stanford University, Stanford, California, USA.
Biophys J. 2011 Sep 21;101(6):1326-34. doi: 10.1016/j.bpj.2011.08.004. Epub 2011 Sep 20.
The ability to stimulate mammalian cells with light has significantly changed our understanding of electrically excitable tissues in health and disease, paving the way toward various novel therapeutic applications. Here, we demonstrate the potential of optogenetic control in cardiac cells using a hybrid experimental/computational technique. Experimentally, we introduced channelrhodopsin-2 into undifferentiated human embryonic stem cells via a lentiviral vector, and sorted and expanded the genetically engineered cells. Via directed differentiation, we created channelrhodopsin-expressing cardiomyocytes, which we subjected to optical stimulation. To quantify the impact of photostimulation, we assessed electrical, biochemical, and mechanical signals using patch-clamping, multielectrode array recordings, and video microscopy. Computationally, we introduced channelrhodopsin-2 into a classic autorhythmic cardiac cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, the channel opens and allows sodium ions to enter the cell, inducing a fast upstroke of the transmembrane potential. We calibrated the channelrhodopsin-expressing cell model using single action potential readings for different photostimulation amplitudes, pulse widths, and frequencies. To illustrate the potential of the proposed approach, we virtually injected channelrhodopsin-expressing cells into different locations of a human heart, and explored its activation sequences upon optical stimulation. Our experimentally calibrated computational toolbox allows us to virtually probe landscapes of process parameters, and identify optimal photostimulation sequences toward pacing hearts with light.
利用光刺激哺乳动物细胞的能力极大地改变了我们对健康和疾病中电兴奋组织的理解,为各种新的治疗应用铺平了道路。在这里,我们使用混合实验/计算技术展示了光遗传学控制在心脏细胞中的潜力。在实验中,我们通过慢病毒载体将通道视紫红质-2引入未分化的人类胚胎干细胞中,并对其进行了分选和扩增。通过定向分化,我们创建了表达通道视紫红质的心肌细胞,并对其进行了光刺激。为了量化光刺激的影响,我们使用膜片钳、多电极阵列记录和视频显微镜评估了电、生化和机械信号。在计算上,我们通过一个由光敏门控变量控制的附加光电流将通道视紫红质-2引入到一个经典的自动节律性心脏细胞模型中。光刺激时,通道打开,允许钠离子进入细胞,引起跨膜电位的快速上升。我们使用不同光刺激幅度、脉冲宽度和频率的单个动作电位读数对表达通道视紫红质的细胞模型进行了校准。为了说明所提出方法的潜力,我们在虚拟条件下将表达通道视紫红质的细胞注入到人心的不同位置,并探索了光刺激下的激活序列。我们实验校准的计算工具箱允许我们虚拟探测过程参数的景观,并确定用光起搏心脏的最佳光刺激序列。