Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, Uttar Pradesh, India.
J Physiol. 2022 Nov;600(21):4653-4676. doi: 10.1113/JP283366. Epub 2022 Sep 30.
The main challenge in cardiac optogenetics is to have low-power, high-fidelity deep excitation of cells with minimal invasiveness and heating. We present a detailed computational study of optogenetic excitation of human ventricular cardiomyocytes (HVCMs) with new ChRmine, bReaChES and CsChrimson red-shifted opsins to overcome the challenge. Action potentials (APs) in ChRmine-expressing HVCMs can be triggered at 6 µW mm (10 ms pulse) and 0.7 µW mm (100 ms pulse) at 585 nm, which is two orders of magnitude lower than ChR2(H134R). This enables safe sustained excitation of deeply situated cardiac cells with ChRmine (7.46 mm) and with bReaChES (6.21 mm) with the light source at the pericardium surface. Deeper excitation up to 10.2 mm can be achieved with ChRmine by illuminating at 650 nm. Photostimulation conditions for minimum charge transfer during APs have been determined, which is important for tissue health under sustained excitation. The AP duration for all the opsins is constant up to 100 ms pulse width but increases thereafter. Interestingly, the AP frequency increases with irradiance under continuous illumination, but APs are suppressed at higher irradiances. The optimal range of irradiance for each opsin to excite HVCMs has been determined. Under optimal photostimulation conditions, each opsin can precisely excite APs up to 2.5 Hz, while latency and power of light pulse for each AP in a sequence remain most stable and an order of magnitude lower, respectively, in ChRmine-expressing HVCMs. The study highlights the importance of ChRmine and bReaChES for resynchronization, termination of ventricular tachycardia and designing optogenetic cardiac pacemakers with enhanced battery life. KEY POINTS: This work is the formulation of accurate theoretical models of optogenetic control of human ventricular cardiomyocytes (HVCMs) expressed with newly discovered opsins (ChRmine, bReaChES and CsChrimson). Under continuous illumination, action potentials in each opsin-expressing HVCMs can only be evoked in a certain range of irradiances. Action potentials in ChRmine-expressing HVCMs can be triggered at ultra-low power (6 µW mm at 10 ms pulse or 0.7 µW mm at 100 ms pulse at 585 nm), which is two to three orders of magnitude lower than reported results. Ongoing action potentials in ChRmine-expressing HVCMs can be suppressed by continuous illumination of 585 nm light at 2 µW mm . ChRmine enables sustained excitation due to its faster recovery from the desensitized state. Optogenetic excitation of deeply situated cardiac cells is possible up to ∼7.46 and 10.2 mm with ChRmine on illuminating the outer surface of pericardium at safe irradiance at 585 nm and 650 nm, respectively. The study opens up prospects for designing energy-efficient light-induced pacemakers, resynchronization and termination of ventricular tachycardia.
心脏光遗传学的主要挑战是在低功率、高保真度的情况下,用最小的侵入性和加热来实现细胞的深层激发。我们提出了一项详细的计算研究,使用新的 ChRmine、bReaChES 和 CsChrimson 红移光遗传学蛋白来克服这一挑战,从而对人类心室肌细胞(HVCMs)进行光遗传学激发。在 585nm 处,ChRmine 表达的 HVCMs 中的动作电位(APs)可以在 6µWmm(10ms 脉冲)和 0.7µWmm(100ms 脉冲)的条件下被触发,这比 ChR2(H134R)低两个数量级。这使得 ChRmine(7.46mm)和 bReaChES(6.21mm)可以用光源在心脏外膜表面安全地持续激发深层的心脏细胞。通过在 650nm 处照明,ChRmine 可以实现高达 10.2mm 的更深层激发。已经确定了在 APs 期间进行最小电荷转移的光刺激条件,这对于在持续激发下组织健康非常重要。所有光遗传学蛋白的 AP 持续时间在 100ms 脉冲宽度内保持不变,但此后会增加。有趣的是,在连续光照下,AP 频率随辐照度的增加而增加,但在较高的辐照度下,AP 会受到抑制。已经确定了每个光遗传学蛋白激发 HVCMs 的最佳辐照度范围。在最佳光刺激条件下,每个光遗传学蛋白都可以精确地激发 APs 达到 2.5Hz,而在一个序列中的每个 AP 的光脉冲的潜伏期和功率仍然保持最稳定,分别比 ChRmine 表达的 HVCMs 低一个数量级。该研究强调了 ChRmine 和 bReaChES 在心脏再同步、终止室性心动过速和设计具有增强电池寿命的光遗传学心脏起搏器方面的重要性。
本工作是对新发现的光遗传学蛋白(ChRmine、bReaChES 和 CsChrimson)表达的人类心室肌细胞(HVCMs)进行光遗传学控制的精确理论模型的制定。在连续光照下,每个光遗传学蛋白表达的 HVCMs 中的动作电位只能在一定的辐照度范围内被诱发。ChRmine 表达的 HVCMs 中的动作电位可以在超低功率(在 585nm 处,10ms 脉冲时为 6µWmm,100ms 脉冲时为 0.7µWmm)下被触发,比报道的结果低两到三个数量级。在 585nm 光的连续照射下,ChRmine 表达的 HVCMs 中正在进行的动作电位可以被抑制到 2µWmm。ChRmine 能够持续激发,这是因为它从脱敏状态恢复得更快。在安全的辐照度下,ChRmine 可以在 585nm 和 650nm 处分别对心脏外膜的外表面进行照明,将深部的心脏细胞激发到约 7.46mm 和 10.2mm。该研究为设计节能的光诱导起搏器、心脏再同步和终止室性心动过速开辟了前景。