Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, D-82152 Martinsried, Germany.
Neuron. 2011 Sep 22;71(6):974-94. doi: 10.1016/j.neuron.2011.08.031. Epub 2011 Sep 21.
Motion vision provides essential cues for navigation and course control as well as for mate, prey, or predator detection. Consequently, neurons responding to visual motion in a direction-selective way are found in almost all species that see. However, directional information is not explicitly encoded at the level of a single photoreceptor. Rather, it has to be computed from the spatio-temporal excitation level of at least two photoreceptors. How this computation is done and how this computation is implemented in terms of neural circuitry and membrane biophysics have remained the focus of intense research over many decades. Here, we review recent progress made in this area with an emphasis on insects and the vertebrate retina.
运动视觉为导航和航向控制以及配偶、猎物或捕食者的检测提供了基本线索。因此,几乎所有有视觉的物种中都能发现对特定方向的视觉运动做出反应的神经元。然而,方向信息并不是在单个光感受器的水平上明确编码的。相反,它必须从至少两个光感受器的时空激发水平中计算出来。这种计算是如何完成的,以及这种计算在神经回路和膜生物物理学方面是如何实现的,这一直是几十年来研究的重点。在这里,我们重点介绍昆虫和脊椎动物视网膜,回顾这一领域的最新进展。