Suppr超能文献

基于Transformer的深度学习模型的开发与验证,用于使用FDG PET/CT图像预测非小细胞肺癌的远处转移

Development and validation of a transformer-based deep learning model for predicting distant metastasis in non-small cell lung cancer using FDG PET/CT images.

作者信息

Hu Na, Luo Yunpeng, Tang Maowen, Yan Gang, Yuan Shengmei, Li Fangyan, Lei Pinggui

机构信息

Department of Radiology, The Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Yunyan District, Guiyang, 550004, China.

Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China.

出版信息

Clin Transl Oncol. 2025 Aug 8. doi: 10.1007/s12094-025-04014-9.

Abstract

BACKGROUND

This study aimed to develop and validate a hybrid deep learning (DL) model that integrates convolutional neural network (CNN) and vision transformer (ViT) architectures to predict distant metastasis (DM) in patients with non-small cell lung cancer (NSCLC) using F-FDG PET/CT images.

METHODS

A retrospective analysis was conducted on a cohort of consecutively registered patients who were newly diagnosed and untreated for NSCLC. A total of 167 patients with available PET/CT images were included in the analysis. DL features were extracted using a combination of CNN and ViT architectures, followed by feature selection, model construction, and evaluation of model performance using the receiver operating characteristic (ROC) and the area under the curve (AUC).

RESULTS

The ViT-based DL model exhibited strong predictive capabilities in both the training and validation cohorts, achieving AUCs of 0.824 and 0.830 for CT features, and 0.602 and 0.694 for PET features, respectively. Notably, the model that integrated both PET and CT features demonstrated a notable AUC of 0.882 in the validation cohort, outperforming models that utilized either PET or CT features alone. Furthermore, this model outperformed the CNN model (ResNet 50), which achieved an AUC of 0.752 [95% CI 0.613, 0.890], p < 0.05. Decision curve analysis further supported the efficacy of the ViT-based DL model.

CONCLUSION

The ViT-based DL developed in this study demonstrates considerable potential in predicting DM in patients with NSCLC, potentially informing the creation of personalized treatment strategies. Future validation through prospective studies with larger cohorts is necessary.

摘要

背景

本研究旨在开发并验证一种混合深度学习(DL)模型,该模型整合了卷积神经网络(CNN)和视觉Transformer(ViT)架构,以使用F-FDG PET/CT图像预测非小细胞肺癌(NSCLC)患者的远处转移(DM)。

方法

对一组连续登记的初诊且未接受治疗的NSCLC患者进行回顾性分析。分析共纳入167例有可用PET/CT图像的患者。使用CNN和ViT架构相结合的方法提取DL特征,随后进行特征选择、模型构建,并使用受试者操作特征(ROC)和曲线下面积(AUC)评估模型性能。

结果

基于ViT的DL模型在训练和验证队列中均表现出强大的预测能力,CT特征的AUC分别为0.824和0.830,PET特征的AUC分别为0.602和0.694。值得注意的是,整合了PET和CT特征的模型在验证队列中显示出显著的AUC为0.882,优于单独使用PET或CT特征的模型。此外,该模型优于CNN模型(ResNet 50),后者的AUC为0.752 [95% CI 0.613, 0.890],p < 0.05。决策曲线分析进一步支持了基于ViT的DL模型的有效性。

结论

本研究中开发的基于ViT的DL在预测NSCLC患者的DM方面显示出巨大潜力,可能为制定个性化治疗策略提供依据。未来需要通过更大队列的前瞻性研究进行验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验