Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA.
Appl Environ Microbiol. 2011 Nov;77(22):8145-53. doi: 10.1128/AEM.05204-11. Epub 2011 Sep 23.
Cultivated psychropiezophilic (low-temperature- and high-pressure-adapted) bacteria are currently restricted to phylogenetically narrow groupings capable of growth under nutrient-replete conditions, limiting current knowledge of the extant functional attributes and evolutionary constraints of diverse microorganisms inhabiting the cold, deep ocean. This study documents the isolation of a deep-sea bacterium following dilution-to-extinction cultivation using a natural seawater medium at high hydrostatic pressure and low temperature. To our knowledge, this isolate, designated PRT1, is the slowest-growing (minimal doubling time, 36 h) and lowest cell density-producing (maximal densities of 5.0 × 10⁶ cells ml⁻¹) piezophile yet obtained. Optimal growth was at 80 MPa, correlating with the depth of capture (8,350 m), and 10°C, with average cell sizes of 1.46 μm in length and 0.59 μm in width. Through detailed growth studies, we provide further evidence for the temperature-pressure dependence of the growth rate for deep-ocean bacteria. PRT1 was phylogenetically placed within the Roseobacter clade, a bacterial lineage known for widespread geographic distribution and assorted lifestyle strategies in the marine environment. Additionally, the gene transfer agent (GTA) g5 capsid protein gene was amplified from PRT1, indicating a potential mechanism for increased genetic diversification through horizontal gene transfer within the hadopelagic environment. This study provides a phylogenetically novel isolate for future investigations of high-pressure adaptation, expands the known physiological traits of cultivated members of the Roseobacter lineage, and demonstrates the feasibility of cultivating novel microbial members from the deep ocean using natural seawater.
目前,培养的嗜低温高压菌仅限于能够在营养丰富的条件下生长的系统发育狭窄分组,这限制了对栖息在寒冷深海中的各种微生物现存功能属性和进化限制的了解。本研究记录了使用天然海水培养基在高静压和低温下进行稀释至灭绝培养后分离深海细菌的过程。据我们所知,这种分离物,命名为 PRT1,是迄今为止生长最慢(最小倍增时间为 36 小时)和细胞密度最低(最大密度为 5.0×10⁶细胞/ml)的嗜压菌。最佳生长条件为 80 MPa,与捕获深度(8350 米)相关,最佳温度为 10°C,平均细胞大小为 1.46μm 长和 0.59μm 宽。通过详细的生长研究,我们提供了进一步的证据证明深海细菌的生长速率与温度压力有关。PRT1 在系统发育上属于玫瑰杆菌群,这是一种在海洋环境中具有广泛地理分布和各种生活方式策略的细菌谱系。此外,还从 PRT1 中扩增了基因转移剂(GTA)g5 衣壳蛋白基因,表明在 Hadopelagic 环境中通过水平基因转移增加遗传多样化的潜在机制。本研究提供了一个具有系统发育新颖性的分离物,用于进一步研究高压适应,扩展了培养的玫瑰杆菌谱系成员的已知生理特征,并证明了使用天然海水从深海中培养新型微生物成员的可行性。