Suppr超能文献

嗜冷α变形菌的分离与特性研究。

Isolation and characterization of a psychropiezophilic alphaproteobacterium.

机构信息

Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA.

出版信息

Appl Environ Microbiol. 2011 Nov;77(22):8145-53. doi: 10.1128/AEM.05204-11. Epub 2011 Sep 23.

Abstract

Cultivated psychropiezophilic (low-temperature- and high-pressure-adapted) bacteria are currently restricted to phylogenetically narrow groupings capable of growth under nutrient-replete conditions, limiting current knowledge of the extant functional attributes and evolutionary constraints of diverse microorganisms inhabiting the cold, deep ocean. This study documents the isolation of a deep-sea bacterium following dilution-to-extinction cultivation using a natural seawater medium at high hydrostatic pressure and low temperature. To our knowledge, this isolate, designated PRT1, is the slowest-growing (minimal doubling time, 36 h) and lowest cell density-producing (maximal densities of 5.0 × 10⁶ cells ml⁻¹) piezophile yet obtained. Optimal growth was at 80 MPa, correlating with the depth of capture (8,350 m), and 10°C, with average cell sizes of 1.46 μm in length and 0.59 μm in width. Through detailed growth studies, we provide further evidence for the temperature-pressure dependence of the growth rate for deep-ocean bacteria. PRT1 was phylogenetically placed within the Roseobacter clade, a bacterial lineage known for widespread geographic distribution and assorted lifestyle strategies in the marine environment. Additionally, the gene transfer agent (GTA) g5 capsid protein gene was amplified from PRT1, indicating a potential mechanism for increased genetic diversification through horizontal gene transfer within the hadopelagic environment. This study provides a phylogenetically novel isolate for future investigations of high-pressure adaptation, expands the known physiological traits of cultivated members of the Roseobacter lineage, and demonstrates the feasibility of cultivating novel microbial members from the deep ocean using natural seawater.

摘要

目前,培养的嗜低温高压菌仅限于能够在营养丰富的条件下生长的系统发育狭窄分组,这限制了对栖息在寒冷深海中的各种微生物现存功能属性和进化限制的了解。本研究记录了使用天然海水培养基在高静压和低温下进行稀释至灭绝培养后分离深海细菌的过程。据我们所知,这种分离物,命名为 PRT1,是迄今为止生长最慢(最小倍增时间为 36 小时)和细胞密度最低(最大密度为 5.0×10⁶细胞/ml)的嗜压菌。最佳生长条件为 80 MPa,与捕获深度(8350 米)相关,最佳温度为 10°C,平均细胞大小为 1.46μm 长和 0.59μm 宽。通过详细的生长研究,我们提供了进一步的证据证明深海细菌的生长速率与温度压力有关。PRT1 在系统发育上属于玫瑰杆菌群,这是一种在海洋环境中具有广泛地理分布和各种生活方式策略的细菌谱系。此外,还从 PRT1 中扩增了基因转移剂(GTA)g5 衣壳蛋白基因,表明在 Hadopelagic 环境中通过水平基因转移增加遗传多样化的潜在机制。本研究提供了一个具有系统发育新颖性的分离物,用于进一步研究高压适应,扩展了培养的玫瑰杆菌谱系成员的已知生理特征,并证明了使用天然海水从深海中培养新型微生物成员的可行性。

相似文献

1
Isolation and characterization of a psychropiezophilic alphaproteobacterium.
Appl Environ Microbiol. 2011 Nov;77(22):8145-53. doi: 10.1128/AEM.05204-11. Epub 2011 Sep 23.
2
Genome sequence of the marine alphaproteobacterium HTCC2150, assigned to the Roseobacter clade.
J Bacteriol. 2010 Dec;192(23):6315-6. doi: 10.1128/JB.01088-10. Epub 2010 Oct 1.
6
Cultivation and ecosystem role of a marine roseobacter clade-affiliated cluster bacterium.
Appl Environ Microbiol. 2008 May;74(9):2595-603. doi: 10.1128/AEM.02191-07. Epub 2008 Mar 7.
7
Diversity, ecology, and genomics of the Roseobacter clade: a short overview.
Arch Microbiol. 2008 Jun;189(6):531-9. doi: 10.1007/s00203-008-0353-y. Epub 2008 Feb 6.
8
Huaishuia halophila gen. nov., sp. nov., isolated from coastal seawater.
Int J Syst Evol Microbiol. 2012 Jan;62(Pt 1):223-228. doi: 10.1099/ijs.0.025536-0. Epub 2011 Mar 11.

引用本文的文献

1
Top abundant deep ocean heterotrophic bacteria can be retrieved by cultivation.
ISME Commun. 2023 Sep 2;3(1):92. doi: 10.1038/s43705-023-00290-0.
2
Genomic Characteristics and Potential Metabolic Adaptations of Hadal Trench and Bacteria Based on Single-Cell Genomics Analyses.
Front Microbiol. 2020 Jul 24;11:1739. doi: 10.3389/fmicb.2020.01739. eCollection 2020.
3
Sulfitobacter profundi sp. nov., isolated from deep seawater.
J Microbiol. 2019 Aug;57(8):661-667. doi: 10.1007/s12275-019-9150-3. Epub 2019 Apr 22.
5
Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives.
Mar Drugs. 2018 Sep 29;16(10):355. doi: 10.3390/md16100355.
6
Vertically distinct microbial communities in the Mariana and Kermadec trenches.
PLoS One. 2018 Apr 5;13(4):e0195102. doi: 10.1371/journal.pone.0195102. eCollection 2018.
7
Temperature and Redox Effect on Mineral Colonization in Juan de Fuca Ridge Flank Subsurface Crustal Fluids.
Front Microbiol. 2016 Mar 31;7:396. doi: 10.3389/fmicb.2016.00396. eCollection 2016.
8
Temperature and pressure adaptation of a sulfate reducer from the deep subsurface.
Front Microbiol. 2015 Oct 6;6:1078. doi: 10.3389/fmicb.2015.01078. eCollection 2015.
9
Single cells within the Puerto Rico trench suggest hadal adaptation of microbial lineages.
Appl Environ Microbiol. 2015 Dec;81(24):8265-76. doi: 10.1128/AEM.01659-15. Epub 2015 Sep 18.
10
Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes.
Extremophiles. 2015 Jul;19(4):721-40. doi: 10.1007/s00792-015-0760-3. Epub 2015 Jun 23.

本文引用的文献

1
Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment.
Environ Microbiol Rep. 2011 Aug;3(4):449-58. doi: 10.1111/j.1758-2229.2010.00223.x. Epub 2010 Nov 24.
2
Genome sequence of the marine alphaproteobacterium HTCC2150, assigned to the Roseobacter clade.
J Bacteriol. 2010 Dec;192(23):6315-6. doi: 10.1128/JB.01088-10. Epub 2010 Oct 1.
3
Genome characteristics of a generalist marine bacterial lineage.
ISME J. 2010 Jun;4(6):784-98. doi: 10.1038/ismej.2009.150. Epub 2010 Jan 14.
4
High-resolution imaging of pelagic bacteria by Atomic Force Microscopy and implications for carbon cycling.
ISME J. 2010 Mar;4(3):427-39. doi: 10.1038/ismej.2009.116. Epub 2009 Nov 26.
5
Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones.
Science. 2009 Oct 23;326(5952):578-82. doi: 10.1126/science.1175309.
6
Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean.
ISME J. 2010 Feb;4(2):159-70. doi: 10.1038/ismej.2009.106. Epub 2009 Oct 15.
8
Surface colonization by marine roseobacters: integrating genotype and phenotype.
Appl Environ Microbiol. 2009 Oct;75(19):6027-37. doi: 10.1128/AEM.01508-09. Epub 2009 Aug 7.
9
Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm.
ISME J. 2009 Dec;3(12):1420-4. doi: 10.1038/ismej.2009.79. Epub 2009 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验