Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
J Cell Biol. 2011 Oct 3;195(1):19-26. doi: 10.1083/jcb.201106110. Epub 2011 Sep 26.
Planar cell polarization represents the ability of cells to orient within the plane of a tissue orthogonal to the apical basal axis. The proper polarized function of multiciliated cells requires the coordination of cilia spacing and cilia polarity as well as the timing of cilia beating during metachronal synchrony. The planar cell polarity pathway and hydrodynamic forces have been shown to instruct cilia polarity. In this paper, we show how intracellular effectors interpret polarity to organize cellular morphology in accordance with asymmetric cellular function. We observe that both cellular actin and microtubule networks undergo drastic reorganization, providing differential roles during the polarized organization of cilia. Using computational angular correlation analysis of cilia orientation, we report a graded cellular organization downstream of cell polarity cues. Actin dynamics are required for proper cilia spacing, global coordination of cilia polarity, and coordination of metachronic cilia beating, whereas cytoplasmic microtubule dynamics are required for local coordination of polarity between neighboring cilia.
平面细胞极性代表细胞在组织平面内沿与顶底轴正交的方向排列的能力。多纤毛细胞的正确极化功能需要协调纤毛间距和纤毛极性,以及在同期同步时纤毛的拍打时间。已经表明平面细胞极性途径和流体动力可以指导纤毛极性。在本文中,我们展示了细胞内效应物如何解释极性,以根据不对称细胞功能组织细胞形态。我们观察到细胞内肌动蛋白和微管网络都经历了剧烈的重组,在纤毛的极化组织中发挥不同的作用。通过对纤毛取向的计算角相关分析,我们报告了细胞极性信号下游的梯度细胞组织。肌动蛋白动力学对于适当的纤毛间距、纤毛极性的全局协调以及同期纤毛拍打的协调是必需的,而细胞质微管动力学对于相邻纤毛之间极性的局部协调是必需的。