Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China.
PLoS One. 2011;6(9):e25090. doi: 10.1371/journal.pone.0025090. Epub 2011 Sep 20.
The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize the osmolyte betaine de novo in response to extracellular salt stress. Betaine is generated by the stepwise methylation of glycine to form sarcosine, N, N-dimethylglycine and betaine by using S-adenosyl-L-methionine (AdoMet) as the methyl donor. The complete gene cluster of Mpgsmt-sdmt was cloned from Southern hybridization and heterologous expressed in E. coli respectively. The recombinant MpGSMT and MpSDMT both retained their in vivo functional activities in E. coli BL21(DE3)RIL to synthesize and accumulate betaine and conferred elevated survival ability in betaine transport deficient mutant E. coli MKH13 under high salt stress. The dramatic activating effects of sodium and potassium ions on the in vitro methyltransferase activities of MpGSMT, but not MpSDMT or bacterial GSMT and SDMT, revealed that GSMT from halophilic methanoarchaeon possesses novel regulate mechanism in betaine biosynthesis pathway. The circular dichroism spectra showed the fluctuated peaks at 206 nm were detected in the MpGSMT under various concentrations of potassium or sodium ions. This fluctuated difference may cause by a change in the β-turn structure located at the conserved glycine- and sarcosine-binding residue Arg167 of MpGSMT. The analytical ultracentrifugation analysis indicated that the monomer MpGSMT switched to dimeric form increased from 7.6% to 70% with KCl concentration increased from 0 to 2.0 M. The level of potassium and sodium ions may modulate the substrate binding activity of MpGSMT through the conformational change. Additionally, MpGSMT showed a strong end product, betaine, inhibitory effect and was more sensitive to the inhibitor AdoHcy. The above results indicated that the first enzymatic step involved in synthesizing the osmolyte betaine in halophilic archaea, namely, GSMT, may also play a major role in coupling the salt-in and compatible solute (osmolyte) osmoadaptative strategies in halophilic methanogens for adapting to high salt environments.
嗜盐古菌 Methanohalophilus portucalensis 可以在胞外盐胁迫下从头合成渗透调节剂甜菜碱。甜菜碱是由甘氨酸逐步甲基化为肌氨酸、N,N-二甲基甘氨酸和甜菜碱,使用 S-腺苷甲硫氨酸 (AdoMet) 作为甲基供体生成的。通过Southern 杂交从嗜盐古菌中克隆了完整的 Mpgsmt-sdmt 基因簇,并分别在大肠杆菌中异源表达。重组 MpGSMT 和 MpSDMT 在大肠杆菌 BL21(DE3)RIL 中均保留了其体内功能活性,可合成并积累甜菜碱,并在高盐胁迫下赋予了甜菜碱转运缺陷突变大肠杆菌 MKH13 更高的生存能力。钠离子和钾离子对嗜盐古菌 MpGSMT 的体外甲基转移酶活性具有显著的激活作用,但对 MpSDMT 或细菌 GSMT 和 SDMT 没有作用,这表明嗜盐古菌的 GSMT 在甜菜碱生物合成途径中具有独特的调控机制。圆二色光谱显示,在不同浓度的钾离子或钠离子下,在 MpGSMT 中检测到 206nm 处的波动峰。这种波动差异可能是由于位于保守的甘氨酸和肌氨酸结合残基 Arg167 处的β-转角结构发生变化引起的。分析超速离心分析表明,随着 KCl 浓度从 0 增加到 2.0M,单体 MpGSMT 从 7.6%增加到 70%转变为二聚体形式。钾离子和钠离子的水平可能通过构象变化调节 MpGSMT 的底物结合活性。此外,MpGSMT 对甜菜碱这种强终产物表现出抑制作用,并且对抑制剂 AdoHcy 更为敏感。上述结果表明,参与合成嗜盐古菌渗透调节剂甜菜碱的第一个酶步骤,即 GSMT,可能在耦合盐进入和相容溶质(渗透调节剂)渗透压适应策略中也发挥主要作用,使嗜盐产甲烷菌适应高盐环境。