Suppr超能文献

双链断裂修复过程推动拟南芥线粒体基因组的进化。

Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis.

机构信息

Center for Plant Science Innovation, University of Nebraska, Lincoln, 68588-0660, USA.

出版信息

BMC Biol. 2011 Sep 27;9:64. doi: 10.1186/1741-7007-9-64.

Abstract

BACKGROUND

The mitochondrial genome of higher plants is unusually dynamic, with recombination and nonhomologous end-joining (NHEJ) activities producing variability in size and organization. Plant mitochondrial DNA also generally displays much lower nucleotide substitution rates than mammalian or yeast systems. Arabidopsis displays these features and expedites characterization of the mitochondrial recombination surveillance gene MSH1 (MutS 1 homolog), lending itself to detailed study of de novo mitochondrial genome activity. In the present study, we investigated the underlying basis for unusual plant features as they contribute to rapid mitochondrial genome evolution.

RESULTS

We obtained evidence of double-strand break (DSB) repair, including NHEJ, sequence deletions and mitochondrial asymmetric recombination activity in Arabidopsis wild-type and msh1 mutants on the basis of data generated by Illumina deep sequencing and confirmed by DNA gel blot analysis. On a larger scale, with mitochondrial comparisons across 72 Arabidopsis ecotypes, similar evidence of DSB repair activity differentiated ecotypes. Forty-seven repeat pairs were active in DNA exchange in the msh1 mutant. Recombination sites showed asymmetrical DNA exchange within lengths of 50- to 556-bp sharing sequence identity as low as 85%. De novo asymmetrical recombination involved heteroduplex formation, gene conversion and mismatch repair activities. Substoichiometric shifting by asymmetrical exchange created the appearance of rapid sequence gain and loss in association with particular repeat classes.

CONCLUSIONS

Extensive mitochondrial genomic variation within a single plant species derives largely from DSB activity and its repair. Observed gene conversion and mismatch repair activity contribute to the low nucleotide substitution rates seen in these genomes. On a phenotypic level, these patterns of rearrangement likely contribute to the reproductive versatility of higher plants.

摘要

背景

高等植物的线粒体基因组异常活跃,通过重组和非同源末端连接(NHEJ)活动,导致其大小和组织的多样性。与哺乳动物或酵母系统相比,植物线粒体 DNA 的核苷酸替换率通常也低得多。拟南芥表现出这些特征,并加速了线粒体重组监测基因 MSH1(MutS1 同源物)的特征描述,使其成为从头开始研究线粒体基因组活性的理想模型。在本研究中,我们研究了导致植物特征异常的基础,因为这些特征有助于快速的线粒体基因组进化。

结果

我们根据 Illumina 深度测序产生的数据并通过 DNA 凝胶印迹分析得到证实,获得了拟南芥野生型和 msh1 突变体中双链断裂(DSB)修复的证据,包括 NHEJ、序列缺失和线粒体不对称重组活性。在更大的范围内,通过对 72 个拟南芥生态型的线粒体比较,同样的 DSB 修复活性的证据将生态型区分开来。在 msh1 突变体中,有 47 对重复序列可以进行 DNA 交换。重组位点在长度为 50-556bp 的范围内显示出不对称的 DNA 交换,共享的序列同一性低至 85%。从头开始的不对称重组涉及异源双链形成、基因转换和错配修复活性。不对称交换的亚化学计量移位导致特定重复类别的快速序列获得和丢失的出现。

结论

同一植物物种内广泛的线粒体基因组变异主要来源于 DSB 活性及其修复。观察到的基因转换和错配修复活性有助于解释这些基因组中低核苷酸替换率的现象。在表型水平上,这些重排模式可能有助于高等植物的生殖多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b6/3193812/6ff7861de46c/1741-7007-9-64-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验