Suppr超能文献

应用区域增长算法自动计算食管压力分布图中的远端收缩积分。

Automated calculation of the distal contractile integral in esophageal pressure topography with a region-growing algorithm.

机构信息

Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-2951, USA.

出版信息

Neurogastroenterol Motil. 2012 Jan;24(1):e4-10. doi: 10.1111/j.1365-2982.2011.01795.x. Epub 2011 Sep 26.

Abstract

BACKGROUND

The distal contractile integral (DCI) is an index of contractile vigor in high-resolution esophageal pressure topography (EPT) calculated as the product of amplitude, duration, and span of the distal esophageal contraction. The aim of this study was to develop an automated algorithm calculating DCI.

METHODS

The DCI was calculated conventionally using ManoView™ (Given Imaging, Los Angeles, CA, USA) software in EPT studies from 72 controls and 20 patients and compared to the calculation using a MATLAB™ (Version 7.9.0, R2009b; The MathWorks Inc., Natick, MA, USA) 'region-growing' algorithm. This algorithm first established the spatial limits of the distal contraction (the proximal pressure trough to either the distal pressure trough or to the superior margin of the lower esophageal sphincter at rest). Pixel-by-pixel horizontal line segments were then analyzed within this span starting at the pressure maximum and extending outward from that point. The limits of 'region-growing' were defined either by the spatial DCI limits or by encountering a pressure <20 mmHg. The DCI was then calculated as the total units of mmHg s cm greater than 20 mmHg within this domain.

KEY RESULTS

Excellent correlation existed between the two methods (r = 0.98, P < 0.001). The DCI values obtained with the conventional calculation were slightly but significantly greater than with the region-growing algorithm. Differences were attributed to the inclusion of vascular pressures in the conventional calculation or to differences in localization of the distal limit of the DCI.

CONCLUSIONS & INFERENCES: The proposed region-growing algorithm provides an automated method to calculate DCI that limits inclusion of vascular pressure artifacts and minimizes the need for user input in data analysis.

摘要

背景

远端收缩积分(DCI)是一种反映高分辨率食管压力图(EPT)中收缩力的指标,通过收缩幅度、持续时间和远端食管收缩的跨度的乘积来计算。本研究旨在开发一种自动计算 DCI 的算法。

方法

在 72 例对照者和 20 例患者的 EPT 研究中,使用 ManoView™(Given Imaging,洛杉矶,加利福尼亚州,美国)软件常规计算 DCI,并与使用 MATLAB™(版本 7.9.0,R2009b;The MathWorks Inc.,马萨诸塞州纳蒂克)“区域增长”算法计算的 DCI 进行比较。该算法首先确定远端收缩的空间范围(近端压力波谷到远端压力波谷或到静息时食管下括约肌下缘的上缘)。然后,在该范围内,从压力最大值开始,以逐行方式分析水平线段。“区域增长”的限制要么由空间 DCI 限制定义,要么由遇到压力<20mmHg 定义。然后,在此范围内计算 DCI,即超过 20mmHg 的单位总 mmHg s cm。

主要结果

两种方法之间存在极好的相关性(r=0.98,P<0.001)。传统计算得到的 DCI 值略高于区域增长算法,但差异有统计学意义。差异归因于常规计算中包含血管压力或 DCI 远端限制的定位差异。

结论和推论

所提出的区域增长算法提供了一种自动计算 DCI 的方法,该方法限制了血管压力伪影的纳入,并最大限度地减少了数据分析中对用户输入的需求。

相似文献

1
Automated calculation of the distal contractile integral in esophageal pressure topography with a region-growing algorithm.
Neurogastroenterol Motil. 2012 Jan;24(1):e4-10. doi: 10.1111/j.1365-2982.2011.01795.x. Epub 2011 Sep 26.
2
Distal contractile integral measurement and vascular compression in the esophagus: a problem unsolved?
Esophagus. 2020 Oct;17(4):502-507. doi: 10.1007/s10388-020-00740-x. Epub 2020 Apr 30.
3
In ineffective esophageal motility, failed swallows are more functionally relevant than weak swallows.
Neurogastroenterol Motil. 2018 Jun;30(6):e13297. doi: 10.1111/nmo.13297. Epub 2018 Apr 14.
4
Assessing the pre- and postpeak phases in a swallow using esophageal pressure topography.
Neurogastroenterol Motil. 2017 Sep;29(9). doi: 10.1111/nmo.13099. Epub 2017 May 22.
6
Distal contraction latency: a measure of propagation velocity optimized for esophageal pressure topography studies.
Am J Gastroenterol. 2011 Mar;106(3):443-51. doi: 10.1038/ajg.2010.414. Epub 2010 Oct 26.
7
Localizing the contractile deceleration point (CDP) in patients with abnormal esophageal pressure topography.
Neurogastroenterol Motil. 2012 Oct;24(10):972-5. doi: 10.1111/j.1365-2982.2012.01959.x. Epub 2012 Jun 24.
8
Phenotypes and clinical context of hypercontractility in high-resolution esophageal pressure topography (EPT).
Am J Gastroenterol. 2012 Jan;107(1):37-45. doi: 10.1038/ajg.2011.313. Epub 2011 Sep 20.
10
Normal values for esophageal high-resolution manometry.
Neurogastroenterol Motil. 2013 Sep;25(9):762-e579. doi: 10.1111/nmo.12167. Epub 2013 Jun 12.

引用本文的文献

1
Manometric esophagogastric junction barrier metrics as predictors of gastroesophageal reflux.
Esophagus. 2024 Jul;21(3):397-404. doi: 10.1007/s10388-024-01057-9. Epub 2024 May 1.
3
Fatigability of the external anal sphincter muscles using a novel strength training resistance exercise device.
Am J Physiol Gastrointest Liver Physiol. 2021 Apr 1;320(4):G609-G616. doi: 10.1152/ajpgi.00456.2020. Epub 2021 Feb 17.
4
On the nature of high-amplitude propagating pressure waves in the human colon.
Am J Physiol Gastrointest Liver Physiol. 2020 Apr 1;318(4):G646-G660. doi: 10.1152/ajpgi.00386.2019. Epub 2020 Feb 18.
5
Characterization of pharyngeal peristaltic pressure variability during volitional swallowing in healthy individuals.
Neurogastroenterol Motil. 2017 Nov;29(11). doi: 10.1111/nmo.13119. Epub 2017 Jun 20.
6
Assessing the pre- and postpeak phases in a swallow using esophageal pressure topography.
Neurogastroenterol Motil. 2017 Sep;29(9). doi: 10.1111/nmo.13099. Epub 2017 May 22.
7
Novel 3D high-resolution manometry metrics for quantifying esophagogastric junction contractility.
Neurogastroenterol Motil. 2017 Aug;29(8). doi: 10.1111/nmo.13054. Epub 2017 Apr 5.
8
Pharyngeal peristaltic pressure variability, operational range, and functional reserve.
Am J Physiol Gastrointest Liver Physiol. 2017 May 1;312(5):G516-G525. doi: 10.1152/ajpgi.00382.2016. Epub 2017 Mar 2.
9
Effects of laryngeal restriction on pharyngeal peristalsis and biomechanics: Clinical implications.
Am J Physiol Gastrointest Liver Physiol. 2016 Jun 1;310(11):G1036-43. doi: 10.1152/ajpgi.00010.2016. Epub 2016 Apr 14.

本文引用的文献

1
Distal contraction latency: a measure of propagation velocity optimized for esophageal pressure topography studies.
Am J Gastroenterol. 2011 Mar;106(3):443-51. doi: 10.1038/ajg.2010.414. Epub 2010 Oct 26.
2
Cardiovascular compression of the esophagus and spread of gastro-esophageal reflux.
Neurogastroenterol Motil. 2011 Jan;23(1):45-51, e3. doi: 10.1111/j.1365-2982.2010.01606.x. Epub 2010 Oct 1.
3
High-resolution manometry in clinical practice: utilizing pressure topography to classify oesophageal motility abnormalities.
Neurogastroenterol Motil. 2009 Aug;21(8):796-806. doi: 10.1111/j.1365-2982.2009.01311.x. Epub 2009 Apr 22.
4
A new approach to analysis and modeling of esophageal manometry data in humans.
IEEE Trans Biomed Eng. 2009 Jul;56(7):1821-30. doi: 10.1109/TBME.2009.2016976. Epub 2009 Mar 21.
5
Region growing: a new approach.
IEEE Trans Image Process. 1998;7(7):1079-84. doi: 10.1109/83.701170.
6
Classifying esophageal motility by pressure topography characteristics: a study of 400 patients and 75 controls.
Am J Gastroenterol. 2008 Jan;103(1):27-37. doi: 10.1111/j.1572-0241.2007.01532.x. Epub 2007 Sep 26.
8
Quantifying esophageal peristalsis with high-resolution manometry: a study of 75 asymptomatic volunteers.
Am J Physiol Gastrointest Liver Physiol. 2006 May;290(5):G988-97. doi: 10.1152/ajpgi.00510.2005. Epub 2006 Jan 12.
9
Physiology of the esophageal pressure transition zone: separate contraction waves above and below.
Am J Physiol Gastrointest Liver Physiol. 2006 Mar;290(3):G568-76. doi: 10.1152/ajpgi.00280.2005. Epub 2005 Nov 10.
10
Topography of the esophageal peristaltic pressure wave.
Am J Physiol. 1991 Oct;261(4 Pt 1):G677-84. doi: 10.1152/ajpgi.1991.261.4.G677.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验