Suppr超能文献

Salmonella mutagenicity and rodent carcinogenicity: quantitative structure-activity relationships.

作者信息

Blake B W, Enslein K, Gombar V K, Borgstedt H H

机构信息

HDi, Rochester, NY 14604.

出版信息

Mutat Res. 1990 Jul;241(3):261-71. doi: 10.1016/0165-1218(90)90023-u.

Abstract

Based on a compilation of 222 reports of rodent nominal lifetime carcinogenicity bioassays by the NCI/NTP on the one hand, and corresponding Salmonella mutagenicity bioassays (Ames tests) on the other, Ashby and Tennant (1988) have divided the carcinogens and non-carcinogens into genotoxic (Ames test positive) and non-genotoxic (Ames test negative) groups and discussed structural characteristics common to each of these groups. The Ames test alone was deemed to be adequate for the identification of genotoxicity because other short-term bioassays, and even combinations, or batteries, appeared to offer no significant advantages. From the results of this study it is possible to achieve (1) a division of the carcinogens into the same genotoxic and non-genotoxic groups, and (2) a division of the non-genotoxic compounds into the same carcinogenic and non-carcinogenic groups, solely on the basis of structure-activity relationships, with a classification accuracy of approx. 95%. (1) An equation comprising 8 sigma molecular charge descriptors, 2 molecular connectivity indices (MCIs), 2 kappa molecular shape descriptors and one MOLSTAC substructure descriptor achieved discrimination between genotoxic and non-genotoxic carcinogens with an accuracy of 94.5%. (2) Another equation comprising 8 sigma molecular charge descriptors, 3 MCIs, one kappa shape descriptor and 12 substructural descriptors achieved discrimination between non-genotoxic carcinogens and non-genotoxic non-carcinogens with an accuracy of 95.2%. These SAR models are suitable for the distinction between (1) genotoxic and non-genotoxic carcinogens and (2) carcinogenic and non-carcinogenic non-genotoxins, both in the absence of animal bioassay data.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验